Facebook Twitter Pinterest <Einbetten>
EUR 76,99
  • Alle Preisangaben inkl. MwSt.
Auf Lager.
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Time Series Analysis: Wit... ist in Ihrem Einkaufwagen hinzugefügt worden
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Alle 3 Bilder anzeigen

Time Series Analysis: With Applications in R (Springer Texts in Statistics) (Englisch) Taschenbuch – 23. November 2009

4.0 von 5 Sternen 2 Kundenrezensionen

Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Taschenbuch
"Bitte wiederholen"
EUR 76,99
EUR 58,45 EUR 74,31
6 neu ab EUR 58,45 9 gebraucht ab EUR 74,31
click to open popover

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.


Produktinformation

Produktbeschreibungen

Pressestimmen

From the reviews of the second edition.

"The book is ideal for undergradute and honours time series modules, . . . .written and structured in such a way that students are introduced to the various concepts and methodologies at a graduate level. . . . more advanced mathematical details are provided in appendices at the end of the chapters. . . .Cryer and new co-author, Kung-Sik Chan, have compiled a comprehensive resource on time series analysis, integrating traditional time series methodologies with newer techniques and procedures. . . . The first ten chapters deal with time-domain analysis of univariate time series. . . . Deterministic trend models. . . . Autoregressive moving average (ARMA) models. . . . The classic model building approach of Box and Jenkins. . . . including multiclative models. . . . The second part of the book consists of new chapters on more advanced topics. Time series regression models. . . . Models of heteroscedasticity. . . . Frequency-domain analysis. . . . The book concludes with nonlinear time series. . . . The fact that R and the TSA package are freely available . . . contibutes to the accessibility of the book. . . . I would highly recommend this book." (Paul J. van Staden, South African Statistical Association)

“Intended to serve as an introductory course text in time series analysis, this edition is appropriate for a target audience of upper-division undergraduates and beginning graduate students. …The second edition has undergone substantial revision; the most notable changes are the inclusion of new material and the switch from Minitab to the R programming language (R Development Core Team 2008). In fact, the text makes extensive use of the contributed R package TSA, maintained by one of the authors (KSC), providing sample code throughout. It also boasts an appendix containing an introduction to R along with several of the commands use in each chapter. Since many practical problems in time series analysis are solved using statistical software, the change to R will likely be appreciated by students. …This text is well written and provides thorough coverage of univariate ARIMA modeling. In fact, I will strongly consider adopting this text for my next introductory time series class at the advanced undergraduate/beginning graduate level.” ( Journal of the American Statistical Association, Dec. 2009, Vol. 104, No. 488)

“Based on the book on Time Series Analysis by Jonathan Cryer, published in 1968, the new edition, co-authored with K.-S. Chan, contains nearly all of the well-received original in addition to considerable up-to-date new material, numerous new datasets, and new exercises. Hence the book emphasizes the time domain approach and particularly the Box-Jenkins approach. In addition, some of the new topics that are integrated with the original include unit root tests, extended autocorrelation functions, subset ARIMA models, and bootstrapping. Furthermore, the new edition covers completely new chapters on time series regression models, time series models of heteroscedasticity, spectral analysis, and threshold models. Although the level of difficulty in these new chapters is somewhat higher than in the more basic material, the discussion is presented in a way that will make the material accessible and quite useful to a broad audience of users. … The book is suitable for a one-semester course attended by students in statistics, economics, business, engineering, and quantitative social sciences. Basic applied statistics through multiple linear regression is assumed. Calculus is assumed only to the extent of minimizing sums of squares, but a calculus-based introduction to statistics is necessary for a thorough understanding of some of the theory. The required facts concerning expectation, variance, covariance, correlation, and properties of conditional expectation and minimum mean square error prediction are presented in appendices. … In conclusion, this book is easy to access. It makes the difficult contexts very concrete. Wonderful work and strongly recommended for a graduate course or for self-study.” (Technometrics. August 1, 2010, 52(3), p. 365)

“This second edition…includes new material on time series regression models, spectral analysis, threshold models, and models of heteroscedasticity; the latter of which are heavily used in econometrics and have traditionally been left out of books on time series. The new chapters on heteroscedasticity and threshold models, in my opinion, are what set this book apart from others. … Overall, the book is well laid out and well written. The TSA package easily loaded on my Mac and the software and example code ran without any problems. …I have no reservations recommending it as the text for an applied course, which is the intended use of the book.” ( Biometrics 65, March 2009)

Synopsis

"Time Series Analysis With Applications in R, Second Edition", presents an accessible approach to understanding time series models and their applications. Although the emphasis is on time domain ARIMA models and their analysis, the new edition devotes two chapters to the frequency domain and three to time series regression models, models for heteroscedasticity, and threshold models.All of the ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment. The tables and graphical displays are accompanied by the R commands used to produce them. An extensive R package, TSA, which contains many new or revised R functions and all of the data used in the book, accompanies the written text. Script files of R commands for each chapter are available for download. There is also an extensive appendix in the book that leads the reader through the use of R commands and the new R package to carry out the analyses. -- Dieser Text bezieht sich auf eine andere Ausgabe: Gebundene Ausgabe.

Alle Produktbeschreibungen

Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?

Kundenrezensionen

4.0 von 5 Sternen
5 Sterne
0
4 Sterne
2
3 Sterne
0
2 Sterne
0
1 Stern
0
Beide Kundenrezensionen anzeigen
Sagen Sie Ihre Meinung zu diesem Artikel

Top-Kundenrezensionen

Format: Gebundene Ausgabe Verifizierter Kauf
Das Buch ist wie erwartet eine sehr gute englische Beschreibung des Lehrstoffs, gut zu lesen und an zu wenden, famos!
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden
Format: Gebundene Ausgabe Verifizierter Kauf
Leichte Schäden am Produkt feststellbar. Dies wird durch schnelle Lieferung und den tiefen Preis zum grössten Teil kompensiert. Eigentlich schade, dass keine Hardcover-Version verfügbar ist.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 3.9 von 5 Sternen 20 Rezensionen
71 von 73 Kunden fanden die folgende Rezension hilfreich
4.0 von 5 Sternen second edition of an excellent text on time series 12. Juni 2008
Von Michael R. Chernick - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
Jonathan Cryer wrote a very nice introductory text on time series analysis in 1986. The book emphasized the time domain approach and particularly the Box-Jenkins approach. There have been many advances in time series analysis over the 22 years that have past since the publication of that book. In this up-to-date edition K.-S. Chan has joined as coauthor. The book now includes such topics as threshold models, time series regression models and outlier detection in time series. Also included for the first time in this edition are the heteroscadastic models including the ARCH and GARCH models. There is also good coverage of frequency domain analysis. An appendix of R commands to do the analyses in the various chapters is also a nice new feature of this edition.
20 von 21 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Excellent Practical Guide 15. November 2008
Von Statistixian - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
Great book. Companion R package TSA is not just another TS Analysis package, but provides excellent additional capabilities, compared to the usual stuff on R. The authors have created a book that's great for self-study or for a graduate course. 5 stars.
17 von 18 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Excellent text for those who want to learn time series on their own. 18. Mai 2010
Von J. Gangolly - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
Very well written, easy to understand. But it is a basic/elementary textbook. If I were learning time series on my own and wanted to use the R language, I would read this book first.
5 von 5 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Finally we found a readable book in Times Series 10. März 2012
Von The Prof - Veröffentlicht auf Amazon.com
Format: Taschenbuch
I like this book a lot.It presents the material very clearly as they didn't skip what others call "Easy stuff". Excellent starter for TSA. Actaully, I was amazed how nowadays we can find books simplify things to a real undergraduate level. It is great for self-study.
5 von 6 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen An excellent applied text on time series 5. Januar 2012
Von Brian - Veröffentlicht auf Amazon.com
Format: Taschenbuch
When I was a graduate student in statistics and was faced with a consulting problem involving time series data, one of my professors lent me this book to use as a reference. I must say this is one of the best applied statistics books I have read. The authors explain the concepts well, illustrate the ideas with many different examples, and provide R code so that all results (point estimates and plots) can be recreated. If you are an R user, all the data sets are within their TSA R package. I am not an expert on time series analysis, but when I am faced with time series data, this is the first book I turn to. I just wish all stats. textbooks were written this well.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.