Facebook Twitter Pinterest
EUR 40,99
Auf Lager.
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Stochastic Simulation: Al... ist in Ihrem Einkaufwagen hinzugefügt worden
Möchten Sie verkaufen? Bei Amazon verkaufen
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Alle 2 Bilder anzeigen

Stochastic Simulation: Algorithms and Analysis (Stochastic Modelling and Applied Probability, Band 57) (Englisch) Taschenbuch – 28. Dezember 2009


Alle 10 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Kindle Edition
Taschenbuch
EUR 40,99
EUR 40,99
8 neu ab EUR 40,99
click to open popover

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.

Produktinformation

Produktbeschreibungen

Pressestimmen

From the reviews:

"The adequate statistical simulation of random quantities is one of the challenges of this century. Therefore, sampling-based computational methods have become a fundamental part of the numerical toolset of both practitioners and researchers … . This book provides a descriptive treatment of a variety of such sampling-based methods. Some steps to the mathematical analysis of their convergence properties and diverse applications are sketched as well. … this book is of potential interest to many researchers, students and instructors." (Henri Schurz, Zentralblatt MATH, Vol. 1126 (3), 2008)

"This is a very interesting book for all who are interested in stochastic simulations. … the book is designed as a potential teaching and learning tool for use in a wide variety of courses. … it is a book that should be on the bookshelf of everybody who is seriously interested in stochastic simulations." (EMS Newsletter, September, 2008)

"The present book provides a broad treatment of sampling-based computational methods, as well as accompanying mathematical analysis of the convergence properties of these methods for a wide range of stochastic application problems. … A set of exercises … is also given at the end of each chapter. This book will be a reference of great value for researchers in probability, statistics, operations research, economics, finance, and engineering … . It would also be perfect as a textbook for graduate seminars or courses in stochastic simulation." (Mou-Hsiung Chang, Siam Review, Vol. 51 (1), 2009)

"This book is intended to provide a broad treatment of the basic ideas and algorithms associated with sampling-based methods, often referred to as Monte Carlo algorithms or stochastic simulation. … the book will be very useful to students and researchers from a wide range of disciplines." (John P. Lehoczky, Mathematical Reviews, Issue 2009 c)

"Stochastic Simulation, written by two prominent researchers in applied probability, is an outgrowth of that maturation. The authors’ goal is not to tell the reader everything known about simulation, nor is it to give a collection of recipes, but rather to provide insight into analyzing problems via simulation. … The book would make an excellent text for a graduate course in simulation, especially in a mathematical sciences department." (Peter C. Kiessler, Journal of the American Statistical Association, Vol. 104 (486), June, 2009)

Buchrückseite

Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods, whereas the second half discusses model-specific algorithms.

Given the wide range of examples, exercises and applications students, practitioners and researchers in probability, statistics, operations research, economics, finance, engineering as well as biology and chemistry and physics will find the book of value.

Søren Asmussen is a professor of Applied Probability at Aarhus University, Denmark and Peter Glynn is the Thomas Ford professor of Engineering at Stanford University.


Kundenrezensionen

Noch keine Kundenrezensionen vorhanden.
Sagen Sie Ihre Meinung zu diesem Artikel

Die hilfreichsten Kundenrezensionen auf Amazon.com

Amazon.com: 3,9 von 5 Sternen 4 Rezensionen
5,0 von 5 SternenOne of the best
am 29. Mai 2016 - Veröffentlicht auf Amazon.com
Verifizierter Kauf
5 Personen fanden diese Informationen hilfreich.
5,0 von 5 SternenGood Book
am 6. Januar 2011 - Veröffentlicht auf Amazon.com
Verifizierter Kauf
5,0 von 5 SternenFive Stars
am 22. Juli 2014 - Veröffentlicht auf Amazon.com
Verifizierter Kauf
5 Personen fanden diese Informationen hilfreich.
1,0 von 5 SternenAwful book
am 8. April 2010 - Veröffentlicht auf Amazon.com
Verifizierter Kauf

Wo ist meine Bestellung?

Versand & Rücknahme

Brauchen Sie Hilfe?