Facebook Twitter Pinterest
EUR 61,30
Lesen Sie dieses Buch gratis mit Kindle Unlimited
Mit Kindle Unlimited dieses Buch auf allen Geräten gratis lesen und Millionen weitere Titel sowie Tausende Hörbücher entdecken.
Mit Kindle Unlimited dieses Buch auf allen Geräten gratis lesen und Millionen weitere Titel sowie Tausende Hörbücher entdecken.

Mit Kindle Unlimited dieses Buch auf allen Geräten gratis lesen und Millionen weitere Titel sowie Tausende Hörbücher entdecken. Mit der gratis Kindle Lese-App überall lesen. Verfügbar für iOS, Android, Mac & Desktop
Kostenlose Lieferung. Details
Nur noch 1 auf Lager
Verkauf durch Liliales Shop und Versand durch Amazon. Für weitere Informationen, Impressum, AGB und Widerrufsrecht klicken Sie bitte auf den Verkäufernamen. Geschenkverpackung verfügbar.
Pattern Recognition and M... ist in Ihrem Einkaufwagen hinzugefügt worden
Andere Verkäufer auf Amazon
In den Einkaufswagen
EUR 59,82
+ EUR 2,99 Versandkosten
Verkauft von: textbookshub
In den Einkaufswagen
EUR 60,09
+ EUR 3,00 Versandkosten
Verkauft von: Textbookhub
In den Einkaufswagen
EUR 75,92
Kostenlose Lieferung. Details
Verkauft von: Amazon
Möchten Sie verkaufen? Bei Amazon verkaufen
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Alle 3 Bilder anzeigen

Pattern Recognition and Machine Learning (Information Science and Statistics) (Englisch) Gebundene Ausgabe – 2007

4.4 von 5 Sternen 14 Kundenrezensionen

Alle 3 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Kindle Edition
Gebundene Ausgabe
EUR 61,30
EUR 58,29 EUR 54,90
60 neu ab EUR 58,29 7 gebraucht ab EUR 54,90
click to open popover

Wird oft zusammen gekauft

  • Pattern Recognition and Machine Learning (Information Science and Statistics)
  • +
  • Deep Learning (Adaptive Computation and Machine Learning)
  • +
  • The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics)
Gesamtpreis: EUR 150,58
Die ausgewählten Artikel zusammen kaufen

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.


Produktinformation

Produktbeschreibungen

Pressestimmen

From the reviews:

"This beautifully produced book is intended for advanced undergraduates, PhD students, and researchers and practitioners, primarily in the machine learning or allied areas...A strong feature is the use of geometric illustration and intuition...This is an impressive and interesting book that might form the basis of several advanced statistics courses. It would be a good choice for a reading group." John Maindonald for the Journal of Statistical Software

"In this book, aimed at senior undergraduates or beginning graduate students, Bishop provides an authoritative presentation of many of the statistical techniques that have come to be considered part of ‘pattern recognition’ or ‘machine learning’. … This book will serve as an excellent reference. … With its coherent viewpoint, accurate and extensive coverage, and generally good explanations, Bishop’s book is a useful introduction … and a valuable reference for the principle techniques used in these fields." (Radford M. Neal, Technometrics, Vol. 49 (3), August, 2007)

"This book appears in the Information Science and Statistics Series commissioned by the publishers. … The book appears to have been designed for course teaching, but obviously contains material that readers interested in self-study can use. It is certainly structured for easy use. … For course teachers there is ample backing which includes some 400 exercises. … it does contain important material which can be easily followed without the reader being confined to a pre-determined course of study." (W. R. Howard, Kybernetes, Vol. 36 (2), 2007)

"Bishop (Microsoft Research, UK) has prepared a marvelous book that provides a comprehensive, 700-page introduction to the fields of pattern recognition and machine learning. Aimed at advanced undergraduates and first-year graduate students, as well as researchers and practitioners, the book assumes knowledge of multivariate calculus and linear algebra … . Summing Up: Highly recommended. Upper-division undergraduates through professionals." (C. Tappert, CHOICE, Vol. 44 (9), May, 2007)

"The book is structured into 14 main parts and 5 appendices. … The book is aimed at PhD students, researchers and practitioners. It is well-suited for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bio-informatics. Extensive support is provided for course instructors, including more than 400 exercises, lecture slides and a great deal of additional material available at the book’s web site … ." (Ingmar Randvee, Zentralblatt MATH, Vol. 1107 (9), 2007)

"This new textbook by C. M. Bishop is a brilliant extension of his former book ‘Neural Networks for Pattern Recognition’. It is written for graduate students or scientists doing interdisciplinary work in related fields. … In summary, this textbook is an excellent introduction to classical pattern recognition and machine learning (in the sense of parameter estimation). A large number of very instructive illustrations adds to this value." (H. G. Feichtinger, Monatshefte für Mathematik, Vol. 151 (3), 2007)

"Author aims this text at advanced undergraduates, beginning graduate students, and researchers new to machine learning and pattern recognition. … Pattern Recognition and Machine Learning provides excellent intuitive descriptions and appropriate-level technical details on modern pattern recognition and machine learning. It can be used to teach a course or for self-study, as well as for a reference. … I strongly recommend it for the intended audience and note that Neal (2007) also has given this text a strong review to complement its strong sales record." (Thomas Burr, Journal of the American Statistical Association, Vol. 103 (482), June, 2008)

"This accessible monograph seeks to provide a comprehensive introduction to the fields of pattern recognition and machine learning. It presents a unified treatment of well-known statistical pattern recognition techniques. … The book can be used by advanced undergraduates and graduate students … . The illustrative examples and exercises proposed at the end of each chapter are welcome … . The book, which provides several new views, developments and results, is appropriate for both researchers and students who work in machine learning … ." (L. State, ACM Computing Reviews, October, 2008)

"Chris Bishop’s … technical exposition that is at once lucid and mathematically rigorous. … In more than 700 pages of clear, copiously illustrated text, he develops a common statistical framework that encompasses … machine learning. … it is a textbook, with a wide range of exercises, instructions to tutors on where to go for full solutions, and the color illustrations that have become obligatory in undergraduate texts. … its clarity and comprehensiveness will make it a favorite desktop companion for practicing data analysts." (H. Van Dyke Parunak, ACM Computing Reviews, Vol. 49 (3), March, 2008)

Synopsis

The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed.

Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory. The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics.Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information. Coming soon: for students, worked solutions to a subset of exercises available on a public web site (for exercises marked "www" in the text); for instructors, worked solutions to remaining exercises from the Springer web site; lecture slides to accompany each chapter; and, data sets available for download.

Alle Produktbeschreibungen


Kundenrezensionen

Sagen Sie Ihre Meinung zu diesem Artikel
Alle 14 Kundenrezensionen anzeigen

Top-Kundenrezensionen

am 3. Juli 2014
Format: Gebundene Ausgabe|Verifizierter Kauf
Kommentar| 7 Personen fanden diese Informationen hilfreich. War diese Rezension für Sie hilfreich? Missbrauch melden
am 31. Mai 2017
Format: Gebundene Ausgabe|Verifizierter Kauf
Kommentar| 2 Personen fanden diese Informationen hilfreich. War diese Rezension für Sie hilfreich? Missbrauch melden
am 4. Januar 2018
Format: Gebundene Ausgabe|Verifizierter Kauf
Kommentar|War diese Rezension für Sie hilfreich? Missbrauch melden
am 3. März 2015
Format: Gebundene Ausgabe|Verifizierter Kauf
Kommentar| Eine Person fand diese Informationen hilfreich. War diese Rezension für Sie hilfreich? Missbrauch melden
am 22. April 2018
Format: Gebundene Ausgabe|Verifizierter Kauf
Kommentar|War diese Rezension für Sie hilfreich? Missbrauch melden
am 24. November 2015
Format: Gebundene Ausgabe|Verifizierter Kauf
Kommentar|War diese Rezension für Sie hilfreich? Missbrauch melden
am 19. Februar 2014
Format: Gebundene Ausgabe|Verifizierter Kauf
Kommentar|War diese Rezension für Sie hilfreich? Missbrauch melden
am 10. Dezember 2013
Format: Gebundene Ausgabe|Verifizierter Kauf
Kommentar| Eine Person fand diese Informationen hilfreich. War diese Rezension für Sie hilfreich? Missbrauch melden

Möchten Sie weitere Rezensionen zu diesem Artikel anzeigen?

Möchten Sie weitere Produkte entdecken? Weitere Informationen finden Sie auf dieser Seite: neural networks

Wo ist meine Bestellung?

Versand & Rücknahme

Brauchen Sie Hilfe?