Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone
  • Android

Geben Sie Ihre Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Kindle-Preis: EUR 48,23
inkl. MwSt.

Diese Aktionen werden auf diesen Artikel angewendet:

Einige Angebote können miteinander kombiniert werden, andere nicht. Für mehr Details lesen Sie bitte die Nutzungsbedingungen der jeweiligen Promotion.

An Ihren Kindle oder ein anderes Gerät senden

An Ihren Kindle oder ein anderes Gerät senden

Facebook Twitter Pinterest <Einbetten>
Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data (Chapman & Hall/Crc Machine Learning & Pattern Recognition) von [Lu, Haiping, Plataniotis, Konstantinos N., Venetsanopoulos, Anastasios]

Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data (Chapman & Hall/Crc Machine Learning & Pattern Recognition) 1st Edition, Kindle Edition


Alle 4 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Kindle Edition
EUR 48,23

Auf der Suche nach neuem Lesestoff?
Entdecken Sie die neue Auswahl in Kindle Unlimited. Hier klicken.

Produktbeschreibungen

Pressestimmen

"Experimentally inclined readers will probably like this book . Practitioners will appreciate that the presentation of the subject matter is goal oriented The structure that this book builds can allow a neophyte to avoid much of the initial confusion and wasted effort necessary to classify unfamiliar work and distinguish between what may be useful or not to one s intents and interests. an exquisitely enriched literature review that is almost good enough to use as an auxiliary graduate textbook a rich yet accessible introduction "
Computing Reviews, October 2014"

" this book is built to be read as a rich and yet accessible introduction artfully structured for a specialized audience of new researchers and bleeding-edge practitioners. The treatment builds an overarching framework and provides an analytical reader with a well-expressed taxonomy on the foundations of historical developments and similarity in content and goals. Thus, packaged, current research is endowed with instant meaning and purpose, the derivation of which would initially elude a newcomer to this complex and articulated branch of machine learning."
Computing Reviews, November 2014

"Experimentally inclined readers will probably like this book . Practitioners will appreciate that the presentation of the subject matter is goal oriented The structure that this book builds can allow a neophyte to avoid much of the initial confusion and wasted effort necessary to classify unfamiliar work and distinguish between what may be useful or not to one s intents and interests. an exquisitely enriched literature review that is almost good enough to use as an auxiliary graduate textbook a rich yet accessible introduction "
Computing Reviews, October 2014"

" this book is built to be read as a rich and yet accessible introduction artfully structured for a specialized audience of new researchers and bleeding-edge practitioners. The treatment builds an overarching framework and provides an analytical reader with a well-expressed taxonomy on the foundations of historical developments and similarity in content and goals. Thus, packaged, current research is endowed with instant meaning and purpose, the derivation of which would initially elude a newcomer to this complex and articulated branch of machine learning."
Computing Reviews, November 2014

"Experimentally inclined readers will probably like this book . Practitioners will appreciate that the presentation of the subject matter is goal oriented The structure that this book builds can allow a neophyte to avoid much of the initial confusion and wasted effort necessary to classify unfamiliar work and distinguish between what may be useful or not to one s intents and interests. an exquisitely enriched literature review that is almost good enough to use as an auxiliary graduate textbook a rich yet accessible introduction "
Computing Reviews, October 2014

"

Kurzbeschreibung

Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor.


Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL.



Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today’s most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications.



The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB® source code, data, and other materials are available at www.comp.hkbu.edu.hk/~haiping/MSL.html


Produktinformation

  • Format: Kindle Edition
  • Dateigröße: 20166 KB
  • Seitenzahl der Print-Ausgabe: 296 Seiten
  • Verlag: Chapman and Hall/CRC; Auflage: 1 (11. Dezember 2013)
  • Verkauf durch: Amazon Media EU S.à r.l.
  • Sprache: Englisch
  • ASIN: B00IPPMI0W
  • Text-to-Speech (Vorlesemodus): Nicht aktiviert
  • X-Ray:
  • Word Wise: Nicht aktiviert
  • Verbesserter Schriftsatz: Nicht aktiviert
  • Durchschnittliche Kundenbewertung: Schreiben Sie die erste Bewertung
  • Amazon Bestseller-Rang: #1.404.202 Bezahlt in Kindle-Shop (Siehe Top 100 Bezahlt in Kindle-Shop)

  •  Ist der Verkauf dieses Produkts für Sie nicht akzeptabel?

Kundenrezensionen

Noch keine Kundenrezensionen vorhanden.
Sagen Sie Ihre Meinung zu diesem Artikel
click to open popover

Wo ist meine Bestellung?

Versand & Rücknahme

Brauchen Sie Hilfe?