Kindle-Preis: | EUR 23,21 |
inkl. USt. |

Lade die kostenlose Kindle-App herunter und lese deine Kindle-Bücher sofort auf deinem Smartphone, Tablet oder Computer – kein Kindle-Gerät erforderlich. Weitere Informationen
Mit Kindle für Web kannst du sofort in deinem Browser lesen.
Scanne den folgenden Code mit deiner Mobiltelefonkamera und lade die Kindle-App herunter.

![Mastering Apache Spark 2.x - Second Edition: Scale your machine learning and deep learning systems with SparkML, DeepLearning4j and H2O (English Edition) von [Romeo Kienzler]](https://m.media-amazon.com/images/W/IMAGERENDERING_521856-T1/images/I/51PDR4u+LfL._SX260_.jpg)
Mastering Apache Spark 2.x - Second Edition: Scale your machine learning and deep learning systems with SparkML, DeepLearning4j and H2O (English Edition) 2. Auflage, Kindle Ausgabe
Preis | Neu ab | Gebraucht ab |
Taschenbuch
"Bitte wiederholen" | 39,99 € | 10,00 € |
- Kindle
23,21 € Lies mit kostenfreier App - Taschenbuch
39,99 €
Advanced analytics on your Big Data with latest Apache Spark 2.x
About This Book
- An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities.
- Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark.
- Master the art of real-time processing with the help of Apache Spark 2.x
Who This Book Is For
If you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.
What You Will Learn
- Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J
- Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming
- Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames
- Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud
- Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames
- Learn how specific parameter settings affect overall performance of an Apache Spark cluster
- Leverage Scala, R and python for your data science projects
In Detail
Apache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform.
The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x.
You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets.
You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks.
Style and approach
This book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.
- ISBN-13978-1786462749
- Auflage2.
- HerausgeberPackt Publishing
- Erscheinungstermin26. Juli 2017
- SpracheEnglisch
- Dateigröße51651 KB
- Kindle (5. Generation)
- Kindle Keyboard
- Kindle DX
- Kindle (2. Generation)
- Kindle (1. Generation)
- Kindle Paperwhite
- Kindle Paperwhite (5. Generation)
- Kindle Touch
- Kindle Voyage
- Kindle
- Kindle Oasis
- Kindle for Windows 8
- Kindle Cloud Reader
- Kindle für Blackberry
- Kindle für Android
- Kindle für Android Tablets
- Kindle für iPhone
- Kindle für iPod Touch
- Kindle für iPad
- Kindle für Mac
- Kindle für Mac
- Kindle für PC
Produktbeschreibungen
Über den Autor und weitere Mitwirkende
Romeo Kienzler
Romeo Kienzler works as the chief data scientist in the IBM Watson IoT worldwide team, helping clients to apply advanced machine learning at scale on their IoT sensor data. He holds a Master's degree in computer science from the Swiss Federal Institute of Technology, Zurich, with a specialization in information systems, bioinformatics, and applied statistics. His current research focus is on scalable machine learning on Apache Spark. He is a contributor to various open source projects and works as an associate professor for artificial intelligence at Swiss University of Applied Sciences, Berne. He is a member of the IBM Technical Expert Council and the IBM Academy of Technology, IBM's leading brains trust.
-- Dieser Text bezieht sich auf eine andere Ausgabe: paperback.Produktinformation
- ASIN : B01MR4YF5G
- Herausgeber : Packt Publishing; 2. Edition (26. Juli 2017)
- Sprache : Englisch
- Dateigröße : 51651 KB
- Text-to-Speech (Vorlesemodus) : Aktiviert
- Screenreader : Unterstützt
- Verbesserter Schriftsatz : Aktiviert
- X-Ray : Nicht aktiviert
- Word Wise : Nicht aktiviert
- Haftnotizen : Mit Kindle Scribe
- Seitenzahl der Print-Ausgabe : 354 Seiten
- Amazon Bestseller-Rang: Nr. 1,162,106 in Kindle-Shop (Siehe Top 100 in Kindle-Shop)
- Nr. 552 in Java (englischsprachig)
- Nr. 646 in Modellierung & Simulation am PC (englischsprachig)
- Nr. 1,752 in Java
- Kundenrezensionen:
Kundenrezensionen
Kundenbewertungen, einschließlich Produkt-Sternebewertungen, helfen Kunden, mehr über das Produkt zu erfahren und zu entscheiden, ob es das richtige Produkt für sie ist.
Um die Gesamtbewertung der Sterne und die prozentuale Aufschlüsselung nach Sternen zu berechnen, verwenden wir keinen einfachen Durchschnitt. Stattdessen berücksichtigt unser System beispielsweise, wie aktuell eine Bewertung ist und ob der Prüfer den Artikel bei Amazon gekauft hat. Es wurden auch Bewertungen analysiert, um die Vertrauenswürdigkeit zu überprüfen.
Erfahre mehr darüber, wie Kundenbewertungen bei Amazon funktionieren.-
Spitzenrezensionen
Spitzenbewertungen aus Deutschland
Derzeit tritt ein Problem beim Filtern der Rezensionen auf. Bitte versuche es später erneut.
It's more than an extensive guide to Apache Spark, it's a Spark bible. The reader gets a cloud flavor on top of the big data development and data science perspective, the book contains more interesting areas like hybrid cloud approaches including containerization and orchestration with Docker and Kubernetes leveraging the stunning capabilities of Apache Spark on another emerging technology.
The book covers an overview of Apache Spark V2, Spark SQL, Spark Streaming, Spark Machine Learning, Data Science topics like DeepLearning including code examples with different algorithms and notebooks, Graph Processing, Optimization techniques with projects like Catalyst and Tungsten and las but not least the deployment on orchestrated cloud containers.
Overall a great book, a lot of useful information, code samples (mostly in Scala) and interesting thoughts. I really like the brain work by the author between the facts and figures of the technologies touched.
Ich kann dieses Buch jedem empfehlen.
Auf jeder Seite sind die Vorgänge gut erklärt.
Spitzenrezensionen aus anderen Ländern



Kundenrezension aus Indien 🇮🇳 am 30. August 2018
