Facebook Twitter Pinterest
Gebraucht kaufen
EUR 31,92
Gebraucht: Sehr gut | Details
Zustand: Gebraucht: Sehr gut
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Alle 2 Bilder anzeigen

Introduction to Bioinformatics (Englisch) Taschenbuch – 20. März 2008

Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Neu ab Gebraucht ab
Gebundene Ausgabe
"Bitte wiederholen"
EUR 30,37
Taschenbuch, 20. März 2008
EUR 99,44 EUR 24,06
3 neu ab EUR 99,44 12 gebraucht ab EUR 24,06

Dieses Buch gibt es in einer neuen Auflage:

Introduction to Bioinformatics
EUR 42,99
Auf Lager.
click to open popover

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.




"An excellent beginner's guide to bioinformatics" Amazon.co.uk, May 2002 "Introduction to Bioinformatics is a firstrate response to these demands and provides lucid and well-written explanations of how and why to perform bioinformatic analyses. Arthur Lesk clearly explains the underlying logic of sequence analyses and illustrates what algorithms do, often by use of helpful analogies to everyday life" Times Higher Education Supplement, April 2003 -- Dieser Text bezieht sich auf eine andere Ausgabe: Taschenbuch.


Life in a post-genomic age has the promise to revolutionize our understanding of how our genes shape who we are, how our genome evolved, and how we function. There are new possibilities for an improved quality of life as we exploit new knowledge to design novel, more effective drugs. Central to these possibilities being realized is one of the most important information-gathering, data-mining, and knowledge-building tools in current research and healthcare development: bioinformatics. An Introduction to Bioinformatics introduces students to the immense power of bioinformatics as a set of scientific tools. The book explains how to access the data archives of genomes and proteins, and the kinds of questions these data and tools can answer: how to make inferences from the data archives, to make connections among them, and to derive useful and interesting predictions. Blending factual content with many opportunities for active learning, Introduction to Bioinformatics offers a truly reader-friendly way to get to grips with this subject, making it the ideal resource for anyone new to the field.Online Resource Centre: The Online Resource Centre features the following materials: For lecturers (password protected): * Figures from the book available to download, to facilitate lecture slide preparation For students: * Web link library of all URLs cited in the book, giving students ready access to these resources * Guided tours of key websites, to help students get the most out of the vast array of information available online * Hyperlinked bibliography - online links to articles referenced in the book, encouraging student engagement with the primary literature * Links to PDB structures of all proteins cited in the book, to enable students to investigate the 3D structures of proteins in a visual, interactive way * Data from the book in computer-readable form, which is available for instant use to facilitate hands-on learning by the student - Guidance to help students answer problems from the text, to support and encourage self-directed learning

Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?


Es gibt noch keine Kundenrezensionen auf Amazon.de
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Stern

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: HASH(0x9df5b330) von 5 Sternen 5 Rezensionen
12 von 12 Kunden fanden die folgende Rezension hilfreich
HASH(0x9e24ec48) von 5 Sternen Excellent introduction, but a bit light 11. September 2011
Von Eric "Siggy" Scott - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
Lesk's introduction is an excellent guide for the newcomer to the world of large-scale genomic data. It is my opinion that you can end your search here for an entry point to the modern field of bioinformatics. It's organized around tools of the trade rather than grandiose theory (systems biology discussions left off till the last chapter), and will serve better as a introduction for undergraduates or researchers new to the field than a reference book for experts. It's biggest perk is the lucidness of discussion and readability.

As best I can tell, the target audience is undergraduate biology students who have basic familiarity with computer programming. Virtually no mathematical sophistication is required -- there is not a proof in sight, and complex mathematical topics like Hidden Markov Models and Monte Carlo algorithms are explained in an unintimidating, intuitive manner. Computer science knowledge such as graph theory, dynamic programming, and computational complexity are introduced minimally and only when they are needed.

Biological concepts are also sufficiently explained, except for perhaps a term here and there, and as a computer scientist I found the book a cinch to read.

Lesk's writing style is lucid and motivated. You know not only what you're learning, but why you're learning it and what you can do with it. Therefore, the book is self-contained and is excellent for self-study.

The first half of the book (Chapter 1-4) are a high-level overview, and a practical summary of existing databases of genetic and proteomic data. This serves an excellent guide for those who A) need to become familiar with the websites that "everybody" in the field knows about, or B) are eager to get their paws on sequence data and start playing! Chapter 3 even gives a (very) brief introduction to data mining and natural language processing for extracting information from the literature.

Chapters 5-7 are the meat of the matter. Sequence alignment (chapter 5) is "THE basic tool of bioinformatics" (p. 243), and is what much of the technical material is organized around. Dotplots, single and multiple sequence alignment, profiling, BLAST, PSI-BLAST, Hidden Markov Models, and phylogenetic trees are all discussed and situated so that the read knows the advantages and disadvantages of each tool, and their limitations used to motivated future chapters on protein structure.

Chapter 6 covers protein folding, structure prediction, classification, and function prediction, as well as applications to drug discovery.

Chapter 7 ends the book with a more theoretical, big-picture discussion of systems biology, information theory, and regulatory networks.

Overall, I think this book is great. It will give you a solid, if low-resolution understanding of the field, and the writing style ensures that you have a genuine understanding of the tools' relationship to scientific questions. The book is full of practical tips like "Visual examination of multiple sequence alignment tables is one of the most profitable activities that a molecular biologist can undertake away from the lab bench. Don't even THINK about not displaying them with different colors for amino acids of different physiochemical type" (p. 271). He also is careful to emphasize difficulties in, for instance, inferring homology from sequence similarity, and in making assumptions about mutation rate. And if you are a biologist who doesn't need more than a basic understanding of the most effective tools, maybe this is sufficient.

Perhaps best of all, you can actually *read* a book like this from cover to cover! And you will actually *remember* what you read!

That said, as a computer scientist with a math degree under my belt, I did miss the presence of rigorous mathematics. The academic field of bioinformatics is much more technical than this introduction-for-mathophobes would imply, as other books like Waterman's (now outdated) Introduction to Computational Biology: Maps, Sequences and Genomes (Chapman & Hall/CRC Interdisciplinary Statistics) makes painfully clear. Then again, that's probably why I didn't ever finish reading Waterman!

That said, I should point out that I was never bored with Lesk's description of algorithms.
1 von 1 Kunden fanden die folgende Rezension hilfreich
HASH(0x9d9386a8) von 5 Sternen Still up to date and Best for Computer Science 3. April 2013
Von Let's Compare Options Preptorial - Veröffentlicht auf Amazon.com
Format: Taschenbuch
As an Engineer and patent reviewer with only undergrad in biochem, my focus is more on the computational aspects than the biology, which made this an ideal text for me. The author doesn't use buzzwords without taking the time to explain them, with explanations at undergrad level-- couldn't be better for my needs,

I actually got this because we use Lesk's other very fine text on proteins (Introduction to Protein Science: Architecture, Function, and Genomics) to review the bioinformatics aspects of more detailed genomic, amino acid, etc. structures.

Some reviews around the web ding this a little for lack of detailed technical depth (pchem, etc.), but don't get the idea that this is a "For Dummies" type intro-- there are plenty of technical details on both the computing and bio sides, even for a graduate COMBINATION of circuits and bio. For a "next step" I love, and we frequently use and recommend, Alon's wonderfully deep but also intelligible: An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall/CRC Mathematical & Computational Biology).

To be brutally honest, if you ARE in a very advanced course, and find yourself a little lost, get this and you'll figure out what you're missing in the advanced material! I'd of course also recommend it highly for both Undergrad and AP High School courses. The algorithms and mining applications are FAR from elementary, and it will challenge even the brightest undergrads.

Library Picks reviews only for the benefit of Amazon shoppers and has nothing to do with Amazon, the authors, manufacturers or publishers of the items we review. We always buy the items we review for the sake of objectivity, and although we search for gems, are not shy about trashing an item if it's a waste of time or money for Amazon shoppers. If the reviewer identifies herself, her job or her field, it is only as a point of reference to help you gauge the background and any biases.
HASH(0x9d9385e8) von 5 Sternen Bioinformatics lite 27. Dezember 2013
Von JoeT - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
If you want a really good intro to bioinformatics and don't want to (or don't know) the necessary math, then this is book for you.
Very easy read, and you will not be hit over the head with complex math.
In fact, most of the math principles are explained in a "for dummies" way, so the topic is readily accessible to everyone.
Highly recommended!
HASH(0x9da0a1a4) von 5 Sternen Five Stars 25. Juli 2016
Von Ian F. - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
Good intro book
0 von 1 Kunden fanden die folgende Rezension hilfreich
HASH(0x9d9387c8) von 5 Sternen Four Stars 3. November 2014
Von SRIPATHY - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.