Facebook Twitter Pinterest
  • Alle Preisangaben inkl. USt
Nur noch 1 auf Lager
Verkauf und Versand durch Basi6EU. Für weitere Informationen, Impressum, AGB und Widerrufsrecht klicken Sie bitte auf den Verkäufernamen.
EUR 32,54 + EUR 3,00 für Lieferungen nach Deutschland

Lieferort:
Um Adressen zu sehen, bitte
Oder
Bitte tragen Sie eine deutsche PLZ ein.
Oder
+ EUR 3,00 Versandkosten
Gebraucht: Gut | Details
Verkauft von frankes shop
Zustand: Gebraucht: Gut
Kommentar: Illustr. Broschur. 24 x 16 cm. Berlin / Heidelberg / New York: Springer 2005. XV, 389 Seiten (dreifarbiger Druck) mit graphischen Darstellungen, Illustrationen und zahlreichen Formeln. Reihe: Springer-Lehrbuch. Leichte Alters- und Gebrauchsspuren, ansonsten gutes bis sehr gutes Exemplar.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Dieses Bild anzeigen

Gewöhnliche Differentialgleichungen: Theorie und Praxis - vertieft und visualisiert mit Maple® (Springer-Lehrbuch) Taschenbuch – 9. März 2005

1.0 von 5 Sternen 1 Kundenrezension

Alle 5 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Kindle Edition
Taschenbuch
EUR 32,54
EUR 25,00 EUR 18,00
6 neu ab EUR 25,00 3 gebraucht ab EUR 18,00

Taschenbücher
Ideal für unterwegs: Taschenbücher im handlichen Format und für alle Gelegenheiten. Zum Taschenbuch-Shop
click to open popover

Hinweise und Aktionen

  • Ausgewählte Leseempfehlungen des Monats
    Entdecken Sie monatlich wechselnde außergewöhnliche Leseempfehlungen aus den Genres Thriller, Krimis, Frauenromane, Liebesromane, historische Romane und Humor.

  • Sie suchen preisreduzierte Fachbücher von Amazon Warehouse Deals? Hier klicken.

  • Amazon AusLese: Jeden Monat vier außergewöhnliche eBook-Neuerscheinungen für je nur 2,49 EUR und Taschenbuch-Neuerscheinungen für je 7,99 EUR. Erfahren Sie hier mehr über das Programm oder melden Sie sich gleich beim Amazon AusLese Newsletter an.
  • Entdecken Sie die aktuellen BILD Bestseller. Jede Woche neu. Hier klicken

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.

Produktinformation

Produktbeschreibungen

Pressestimmen

... Die Anwendungen der Theorie der gewöhnlichen Differentialgleichungen in Wissenschaft und Technik sind überaus vielfältig. Man erhält Diffrentialgleichungen durch die mathematische Modellierung von Systemen verschiedenster Art, wobei oft Näherungen und Idealisierungen gemacht werden. Beispielsweise kann man sich fragen, auf welche Weise ein Spiegel oder eine Satellitenschüssel gewölbt sein müssen, damit sie Sonnenlicht bzw. Radiowellen (idealisiert: parallel einfallende Strahlen) auf eine Stelle bündeln. Man kommt dabei auf die eben genannte Differentialgleichung, und die Lösung beschreibt gerade einen Parabolspiegel bzw. eine Parabolantenne.

Neben der Frage nach der Existenz und der Eindeutigkeit von Lösungen geht es in der Praxis vor allem darum, wie man Lösungsfunktionen tatsächlich gewinnen kann, und in welcher Weise diese von Anfangswerten oder sonstigen Parametern abhängen. Die Art dieser Abhängigkeit kann beispielsweise darüber entscheiden, ob eine Brücke bei etwas höherer Belastung sich nur ein bißchen stärker biegt oder - einstürzt.

Nun haben Prof. Wilhelm Forst von der Universität Ulm und Prof. Dieter Hoffmann von der Universität Konstanz ein Lehrbuch über gewöhnliche Differentialgleichungen vorgelegt, das schon im Untertitel "Theorie und Praxis" und erst recht im Zusatz "vertieft und visualisiert mit MAPLE "deutlich macht, daß es kein reiner Trockenschwimmkurs für Theoretiker sein will. Wie in ihrem vielgelobten Vorgängerwerk "Funktionentheorie erkunden mit MAPLE" stellen die beiden Autoren die Theorie des Fachgebiets elegant und mathematisch streng dar und führen mit Hilfe eines Computeralgebrasystems (CAS) zahlreiche Beispiele praktisch vor. Durch das CAS können ohne Mühe auch wesentlich aufwendigere Rechnungen als sonst gemeistert werden.

Das neue Buch ist wie sein Vorgänger auf eine didaktisch überzeugende Art durchgängig zweigeteilt angelegt: In jedem Kapitel werden zunächst auf 'klassische` Weise die mathematischen Zusammenhänge erarbeitet und bewiesen. Anschließend folgen ausführlich erläuterte, ausgefeilte MAPLE-Arbeitsblätter, die die Theorie in die Praxis umsetzen und so den Stoff greifbar und anschaulich machen. Zwischen den Theorie- und Praxisteilen finden sich jeweils historische Anmerkungen, nämlich kurze Portraits in Wort und Bild von zugehörigen wichtigen Personen aus der Mathematikgeschichte.

Benutzer anderer CAS mögen bedauern, daß auch in diesem Buch nur MAPLE berücksichtigt wurde (die Programmtexte muß man übrigens nicht eintippen, sondern findet sie im Internet). Andererseits ist eine Übertragung der vorgestellten Methoden auf andere, ähnlich arbeitende CAS überaus einfach und fördert eine selbständige Auseinandersetzung mit dem Stoff, die dem Verständnis sowohl der Mathematik als auch der CAS-Besonderheiten nur förderlich sein kann.

"Gewöhnlich Differentialgleichungen" von Forst und Hoffmann kann man sowohl den an theoretischen Grundlagen interessierten als auch den aus Natur- und Ingenieurswissenschaften kommenden anwendungsorientierten Lesern ans Herz legen. Auch Ästheten, die Wert auf eine sowohl optisch ansprechende als auch inhaltlich überzeugende Darstellung von Mathematik legen, werden an diesem Buch Gefallen finden. Besonderes Lob verdienen dabei das Kapitel über Laplace-Transformationen und der Anhang über Matrixfunktionen - beides Dinge, die ebenso theoretisch interessant wie auch von hoher praktischer Bedeutung sind.
Markus Sigg, Freiburg, 30. Mai 2005 (in uni'kon 19|2005 (ISSN 1617-3627))

Das vorliegende Lehrbuch von Wilhelm Forst und Dieter Hoffmann bietet eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen, wobei sowohl Anfangs-, als auch Randwertprobleme behandelt werden. Es hebt sich insbesondere dadurch von anderen Büchern in diesem Bereich ab, daß der behandelte Stoff zusätzlich anhand des Computer-Algebra Systems Maple visualisiert und erläutert wird. So findet sich eine Vielzahl von Beispielen, die explizit mittels reichhaltig kommentierter Maple-Programme (sog. Worksheets) erarbeitet sind. Das ansprechende dreifarbige Layout (blau, grau, schwarz) erinnert an den Stil amerikanischer Textbooks. Hinsichtlich der erforderlichen Vorkenntnisse sind lediglich etwa die an deutschsprachigen Universitäten üblichen Grundvorlesungen in Analysis und linearer Algebra zu nennen. 
Das Buch ist prägnant und kurz geschrieben. Gut 50 (ohne Einleitung) entfallen auf den theoretischen Teil, wogegen der Rest aus sorgfältig dargestellten Maple-Worksheets, einem Anhang zu Maple, dem Index, sowie einem umfassenden Literaturverzeichnis besteht. Mit Vorteil werden viele Themen zunächst für allgemeine Systeme behandelt und erst dann auf den zweidimensionalen Fall und Differentialgleichungen höherer Ordnung spezialisiert. In Hinblick auf die vielen vollständig durchgerechneten Beispiele, im Text- und auch im Maple-Teil, verzichten die Autoren auf gesonderte Übungsaufgaben. 
Dank kompakter Darstellung wird in den acht Kapiteln (inklusive Anhang) ein breites Spektrum abgedeckt. Kapitel 1 motiviert die Theorie anhand von Bemerkungen zum Begriff der gewöhnlichen Differentialgleichung, deren geometrischen Veranschaulichung und zur mathematischen Modellierung. Danach werden elementare Integrationsmethoden vorgestellt, die skalare Gleichungen mit getrennten Veränderlichen, lineare und exakte, wie auch Euler-homogene, Bernoullische, Riccatische oder Clairautsche Gleichungen betreffen. Die fundamentalen Existenz- und Eindeutigkeitsfragen werden im Kapitel 3 behandelt. Hierbei dient ein abstraktes Fixpunktresultat dem Beweis des Satzes von Picard-Lindelöf. Zudem findet man quantitative Stetigkeitsüberlegungen, das Konzept der maximalen Lösung und einen kurzen Exkurs in die Theorie der kontinuierlichen dynamischen Systeme. Die folgenden beiden Kapitel beschäftigen sich mit linearen Gleichungen, der algebraischen Struktur ihres Lösungsraumes sowie entsprechenden Lösungsmethoden. Als Ergänzung findet man in Kapitel 6 Ausführungen über Potenzreihenansätze im Fall der Hermite-, der Legendre- und der Bessel-Gleichungen, wie auch eine Einführung in die Methode der Laplace-Transformationen. Schließlich werden noch Rand- und Eigenwertprobleme behandelt, wie etwa selbstadjungierte Randwertaufgaben und die entsprechende Sturm-Liouville Theorie. Als Besonderheit ist definitiv das Kapitel 8 mit einem Anhang über Matrixfunktionen zu nennen. Auf Basis der Spektraldarstellung von Sylvester-Buchheim bietet es eine elementare Berechnungsmethode für Matrix-wertige Funktionen, wie etwa der Matrix-Exponentialfunktion. Am Ende der einzelnen Kapitel findet man bebilderte biographische Informationen zu wichtigen Mathematikern und Maple-Worksheets zur dargebotenen Theorie.
Christian Poetzsche (Minneapolis). Zentralblatt für Mathematik (pre02167503)

Aus den Rezensionen:

"Das vorliegende Buch führt nicht nur in die Theorie ein, sondern vermittelt auch aufgrund der zahlreichen vollständig durchgerechneten Beispiele einen Einblick in deren Anwendungspraxis. Eine weitere Besonderheit ist der Brückenschlag zur Computeranwendung. Mit ausgefeilten Maple-Arbeitesblättern wird gezeigt, wie man mit dem Computer gestalten, Ideen vermitteln und eindrucksvoll visualisieren kann …"

(in: MATHDI, 2006, Vol. 1083, S. 45)

Aus den Rezensionen:

"Das vorliegende Lehrbuch … bietet eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen … Es hebt sich insbesondere dadurch von anderen Büchern in diesem Bereich ab, daß der behandelte Stoff zusätzlich anhand des Computer-Algebra Systems MAPLE visualisiert und erläutert wird. So findet sich eine Vielzahl von Beispielen, die explizit mittels reichhaltig kommentierter MAPLE-Programme … erarbeitet sind … Das Buch ist prägnant und kurz geschrieben. … Dank kompakter Darstellung wird in den acht Kapiteln (inklusive Anhang) ein breites Spektrum abgedeckt …"

(Christian Poetzsche, in: ZentralblattMATH, 2006, Vol. 1083, S. 45)

Aus den Rezensionen:

"… Jedes Kapitel … wirkt … mit seinen … Abschnitten sehr in sich zusammenhängend und abgeschlossen. … Wichtige Inhalte … werden farblich unterlegt und die Anzahl der Graphiken ist … auch ausreichend. … Dieses mag … den Lehrenden zwecks Vergleichmöglichkeiten positiv erscheinen … Das Lesen dieses Buches hat sich … durchaus als flüssig erwiesen. Der Vorteil liegt … ganz klar in dem dritten Abschnitt eines jeden Kapitels, da durch die Maple-Worksheets eine sehr gute Grundlage zur Visualisierung gegeben ist. … empfehlenswert …"

(in: Wurzelmännchen, 2006, Vol. 29)

"… Für viele Menschen ... ist, was das Buch präsentiert, genau das, was man kennen sollte. Und die Kombination mit Maple ist sehr geglückt. … Das Buch ... entwickelt die nötige Theorie durchaus. ... Unbedingt empfehlenswert!" (H. Prodinger, in: IMN - Internationale Mathematische Nachrichten, 2008, Vol. 62, Issue 208, S. 68)

Buchrückseite

Die Theorie der Gewöhnlichen Differentialgleichungen ist ein grundlegendes und unverändert aktuelles Gebiet der Mathematik.
Das vorliegende Buch führt nicht nur äußerst sorgfältig und umfassend in die Theorie ein, sondern vermittelt auch aufgrund der zahlreichen vollständig durchgerechneten Beispiele einen Einblick in deren Anwendungspraxis.
Eine weitere Besonderheit ist der Brückenschlag zur Computeranwendung. Mit ausgefeilten Maple-Arbeitsblättern wird gezeigt, wie man mit dem Computer gestalten, Ideen vermitteln und eindrucksvoll visualisieren kann. So können auch rechnerisch anspruchsvollere Beispiele behandelt werden, als dies sonst üblich ist.
Mit seinem Reichtum an Material, dem klaren und präzisen Stil und der durchdachten didaktischen Konzeption ist das Buch bestens als Basis und Leitfaden für Studierende und Lehrende der Mathematik, Physik, Wirtschafts- wie auch Ingenieurwissenschaften geeignet.


Kundenrezensionen

1,0 von 5 Sternen
Sagen Sie Ihre Meinung zu diesem Artikel
Alle 1 Kundenrezensionen anzeigen

Top-Kundenrezensionen

am 22. Dezember 2014
Format: Taschenbuch|Verifizierter Kauf
0Kommentar|War diese Rezension für Sie hilfreich?JaNeinMissbrauch melden
Möchten Sie weitere Produkte entdecken? Weitere Informationen finden Sie auf dieser Seite: Arbeitskleidung

Wo ist meine Bestellung?

Versand & Rücknahme

Brauchen Sie Hilfe?