
Lade die kostenlose Kindle-App herunter und lese deine Kindle-Bücher sofort auf deinem Smartphone, Tablet oder Computer – kein Kindle-Gerät erforderlich. Weitere Informationen
Mit Kindle für Web kannst du sofort in deinem Browser lesen.
Scanne den folgenden Code mit deiner Mobiltelefonkamera und lade die Kindle-App herunter.


Mehr erfahren
Dem Autor folgen
OK
Climate Time Series Analysis: Classical Statistical and Bootstrap Methods (Atmospheric and Oceanographic Sciences Library, 42, Band 42) Gebundene Ausgabe – 1. September 2010
Preis | Neu ab | Gebraucht ab |
Gebundenes Buch
"Bitte wiederholen" | 249,92 € | — |
Gebundenes Buch, 1. September 2010 |
—
| — | 69,00 € |
Taschenbuch
"Bitte wiederholen" | 157,99 € | — |
- Kindle
110,59 € Lies mit kostenfreien App - Gebundenes Buch
ab 69,00 € - Taschenbuch
157,99 €
Dieses Buch gibt es in einer neuen Auflage:
Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation.
This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.
- Seitenzahl der Print-Ausgabe508 Seiten
- SpracheEnglisch
- HerausgeberSpringer
- Erscheinungstermin1. September 2010
- Abmessungen15.6 x 2.86 x 23.4 cm
- ISBN-109048194814
- ISBN-13978-9048194810
Produktbeschreibungen
Buchrückseite
Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation.
This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.
Manfred Mudelsee received his diploma in Physics from the University of Heidelberg and his doctoral degree in Geology from the University of Kiel. He was then postdoc in Statistics at the University of Kent at Canterbury, research scientist in Meteorology at the University of Leipzig and visiting scholar in Earth Sciences at Boston University; currently he does climate research at the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven. His science focuses on climate extremes, time series analysis and mathematical simulation methods. He has authored over 50 peer-reviewed articles. In his 2003 Nature paper, Mudelsee introduced the bootstrap method to flood risk analysis. In 2005, he founded the company Climate Risk Analysis.
Über den Autor und weitere Mitwirkende
Manfred Mudelsee received his diploma in Physics from the University of Heidelberg and his doctoral degree in Geology from the University of Kiel. He was then postdoc in Statistics at the University of Kent at Canterbury, research scientist in Meteorology at the University of Leipzig and visiting scholar in Earth Sciences at Boston University; currently he does climate research at the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven. His science focuses on climate extremes, time series analysis and mathematical simulation methods. He has authored over 50 peer-reviewed articles. In his 2003 Nature paper, Mudelsee introduced the bootstrap method to flood risk analysis. In 2005, he founded the company Climate Risk Analysis.
Produktinformation
- Herausgeber : Springer; 2010. Edition (1. September 2010)
- Sprache : Englisch
- Gebundene Ausgabe : 508 Seiten
- ISBN-10 : 9048194814
- ISBN-13 : 978-9048194810
- Abmessungen : 15.6 x 2.86 x 23.4 cm
- Kundenrezensionen:
Informationen zum Autor

Research Fields
============
● Statistical Analysis of Climate Data
● Risk Analysis
● Mathematical Simulation Methods
Career
=====
● since 10/2007
Visiting/Research Scientist, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
● since 07/2009
Eingetragener Kaufmann (HRA 201394, Amtsgericht Hannover, Germany)
● since 01/2005
CEO and Founder, Climate Risk Analysis
● 03/2011–06/2011
Guest Scientist, MARUM – Center for Marine Environmental Sciences, University of Bremen, Germany
● 09/2003–08/2004
Visiting Scholar, Department of Earth Sciences, Boston University, USA
● 09/1999–09/2007
Research Scientist, Institute of Meteorology, University of Leipzig, Germany
● 09/1997–08/1999
Postdoc, Institute of Mathematics and Statistics, University of Kent, Canterbury, United Kingdom
● 04/1996–08/1997
Research Fellow, Geological Institute, University of Kiel, Germany
Education
========
● 03/1996
PhD in Geology (magna cum laude), University of Kiel, Germany; Advisor: K. Stattegger
● 06/1990
Diploma in Physics, University of Heidelberg, Germany; Advisor: A. Mangini
Kundenrezensionen
Kundenbewertungen, einschließlich Produkt-Sternebewertungen, helfen Kunden, mehr über das Produkt zu erfahren und zu entscheiden, ob es das richtige Produkt für sie ist.
Um die Gesamtbewertung der Sterne und die prozentuale Aufschlüsselung nach Sternen zu berechnen, verwenden wir keinen einfachen Durchschnitt. Stattdessen berücksichtigt unser System beispielsweise, wie aktuell eine Bewertung ist und ob der Prüfer den Artikel bei Amazon gekauft hat. Es wurden auch Bewertungen analysiert, um die Vertrauenswürdigkeit zu überprüfen.
Erfahre mehr darüber, wie Kundenbewertungen bei Amazon funktionieren.Spitzenrezensionen aus anderen Ländern

Overall, much of the material is common to any time series book however the bootstrapping angle is novel and interesting. An interesting omission for a book on climate time series is the lack of an analysis of global warming temperature trends.