Facebook Twitter Pinterest <Einbetten>
Nur noch 9 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Causal Inference for Stat... ist in Ihrem Einkaufwagen hinzugefügt worden
Gebraucht: Sehr gut | Details
Verkauft von Warehouse Deals
Zustand: Gebraucht: Sehr gut
Kommentar: Schrumpffolie fehlt, Aktivierungscodes für Online-Bonusinhalte fehlen möglicherweise bzw. ist abgelaufen. Moderater Schaden am Cover. Amazon-Kundenservice und Rücknahmegarantie (bis zu 30 Tagen) bei jedem Kauf.
Andere Verkäufer auf Amazon
In den Einkaufswagen
EUR 43,76
+ EUR 3,00 Versandkosten
Verkauft von: Fatbraincouk
In den Einkaufswagen
EUR 48,19
+ GRATIS Lieferung innerhalb Deutschlands
Verkauft von: -PBShop UK-
In den Einkaufswagen
EUR 48,36
+ GRATIS Lieferung innerhalb Deutschlands
Verkauft von: Book Depository DE
Möchten Sie verkaufen? Bei Amazon verkaufen
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Alle 3 Bilder anzeigen

Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction (Englisch) Gebundene Ausgabe – 14. Mai 2015

Alle 3 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Neu ab Gebraucht ab
Kindle Edition
Gebundene Ausgabe
EUR 44,99
EUR 41,98 EUR 28,20
38 neu ab EUR 41,98 8 gebraucht ab EUR 28,20
click to open popover

Wird oft zusammen gekauft

  • Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction
  • +
  • Counterfactuals and Causal Inference: Methods And Principles For Social Research (Analytical Methods for Social Research)
  • +
  • Causal Inference in Statistics - A Primer
Gesamtpreis: EUR 105,29
Die ausgewählten Artikel zusammen kaufen

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.




'This book offers a definitive treatment of causality using the potential outcomes approach. Both theoreticians and applied researchers will find this an indispensable volume for guidance and reference.' Hal Varian, Chief Economist, Google, and Emeritus Professor, University of California, Berkeley

'By putting the potential outcome framework at the center of our understanding of causality, Imbens and Rubin have ushered in a fundamental transformation of empirical work in economics. This book, at once transparent and deep, will be both a fantastic introduction to fundamental principles and a practical resource for students and practitioners. It will be required readings for any class I teach.' Esther Duflo, Massachusetts Institute of Technology

'Causal Inference sets a high new standard for discussions of the theoretical and practical issues in the design of studies for assessing the effects of causes - from an array of methods for using covariates in real studies to dealing with many subtle aspects of non-compliance with assigned treatments. The book includes many examples using real data that arose from the authors' extensive research portfolios. These examples help to clarify and explain many important concepts and practical issues. It is a book that both methodologists and practitioners from many fields will find both illuminating and suggestive of further research. It is a professional tour de force, and a welcomed addition to the growing (and often confusing) literature on causation in artificial intelligence, philosophy, mathematics and statistics.' Paul W. Holland, Emeritus, Educational Testing Service

'A comprehensive and remarkably clear overview of randomized experiments and observational designs with as-good-as-random assignment that is sure to become the standard reference in the field.' David Card, Class of 1950 Professor of Economics, University of California, Berkeley

'This book will be the 'Bible' for anyone interested in the statistical approach to causal inference associated with Donald Rubin and his colleagues, including Guido Imbens. Together, they have systematized the early insights of Fisher and Neyman and have then vastly developed and transformed them. In the process they have created a theory of practical experimentation whose internal consistency is mind-boggling, as is its sensitivity to assumptions and its elaboration of the key 'potential outcomes' framework. The authors' exposition of random assignment experiments has breadth and clarity of coverage, as do their chapters on observational studies that can be readily conceptualized within an experimental framework. Never have experimental principles been better warranted intellectually or better translated into statistical practice. The book is a 'must read' for anyone claiming methodological competence in all sciences that rely on experimentation.' Thomas D. Cook, Joan and Sarepta Harrison Chair of Ethics and Justice, Northwestern University, Illinois

'In this wonderful and important book, Imbens and Rubin give a lucid account of the potential outcomes perspective on causality. This perspective sensibly treats all causal questions as questions about a hidden variable, indeed the ultimate hidden variable, 'What would have happened if things were different?' They make this perspective mathematically precise, show when and to what degree it succeeds, and discuss how to apply it to both experimental and observational data. This book is a must-read for natural scientists, social scientists and all other practitioners who seek new hypotheses and new truths in their complex data.' David Blei, Columbia University, New York

'This thorough and comprehensive book uses the 'potential outcomes' approach to connect the breadth of theory of causal inference to the real-world analyses that are the foundation of evidence-based decision making in medicine, public policy and many other fields. Imbens and Rubin provide unprecedented guidance for designing research on causal relationships, and for interpreting the results of that research appropriately.' Mark McClellan, Director of the Health Care Innovation and Value Initiative, Brookings Institution, Washington DC

'This book will revolutionize how applied statistics is taught in statistics and the social and biomedical sciences. The authors present a unified vision of causal inference that covers both experimental and observational data. They do a masterful job of communicating some of the deepest, and oldest, issues in statistics to readers with disparate backgrounds. They closely connect theoretical concepts with applied concerns, and they honestly and clearly discuss the identifying assumptions of the methods presented. Too many books on statistical methods present a menagerie of disconnected methods and pay little attention to the scientific plausibility of the assumptions that are made for mathematical convenience, instead of for verisimilitude. This book is different. It will be widely read, and it will change the way statistics is practiced.' Jasjeet S. Sekhon, Robson Professor of Political Science and Statistics, University of California, Berkeley

'Clarity of thinking about causality is of central importance in financial decision making. Imbens and Rubin provide a rigorous foundation allowing practitioners to learn from the pioneers in the field.' Stephen Blyth, Managing Director, Head of Public Markets, Harvard Management Company

'A masterful account of the potential outcomes approach to causal inference from observational studies that Rubin has been developing since he pioneered it fourty years ago.' Adrian Raftery, Blumstein-Jordan Professor of Statistics and Sociology, University of Washington

Über das Produkt

In this groundbreaking text, two world-renowned experts present statistical methods for studying causal effects: how can we learn about the expected effect of an intervention or a change in environment? The authors discuss how we can assess such effects in simple randomized experiments, where the researcher controls the treatments, and in observational studies, where the subjects themselves may affect which treatment they receive.

Alle Produktbeschreibungen


Noch keine Kundenrezensionen vorhanden.
Sagen Sie Ihre Meinung zu diesem Artikel

Die hilfreichsten Kundenrezensionen auf Amazon.com

Amazon.com: 3,7 von 5 Sternen 12 Rezensionen
10 Personen fanden diese Informationen hilfreich.
5,0 von 5 SternenA good reference text/introduction to causal inference using Propensity Score analysis
am 22. Januar 2017 - Veröffentlicht auf Amazon.com
Verifizierter Kauf
1,0 von 5 SternenNot very rigorous book, "real" examples are really poor
am 21. März 2018 - Veröffentlicht auf Amazon.com
Verifizierter Kauf
3 Personen fanden diese Informationen hilfreich.
4,0 von 5 Sternenthat would be perfect!
am 1. November 2016 - Veröffentlicht auf Amazon.com
Verifizierter Kauf
3 Personen fanden diese Informationen hilfreich.
3,0 von 5 SternenIn parts useful but too unstructured, redundant, lengthy and incomplete
am 17. November 2017 - Veröffentlicht auf Amazon.com
2 Personen fanden diese Informationen hilfreich.
3,0 von 5 SternenAlthough this might be a good book to study causal inference since there are not ...
am 22. Februar 2017 - Veröffentlicht auf Amazon.com

Wo ist meine Bestellung?

Versand & Rücknahme

Brauchen Sie Hilfe?