Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone
  • Android

Geben Sie Ihre Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Kindle-Preis: EUR 19,98
inkl. MwSt.

Diese Aktionen werden auf diesen Artikel angewendet:

Einige Angebote können miteinander kombiniert werden, andere nicht. Für mehr Details lesen Sie bitte die Nutzungsbedingungen der jeweiligen Promotion.

An Ihren Kindle oder ein anderes Gerät senden

An Ihren Kindle oder ein anderes Gerät senden

Facebook Twitter Pinterest <Einbetten>
Building Machine Learning Systems with Python von [Richert, Willi, Coelho, Luis Pedro]
Anzeige für Kindle-App

Building Machine Learning Systems with Python Kindle Edition


Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
EUR 19,98

Länge: 292 Seiten Sprache: Englisch
  • Aufgrund der Dateigröße dauert der Download dieses Buchs möglicherweise länger.

Unsere Schatzkiste
Entdecken Sie monatlich Top-eBooks für je 1,99 EUR. Exklusive und beliebte eBooks aus verschiedenen Genres stark reduziert.

Produktbeschreibungen

Kurzbeschreibung

In Detail

Machine learning, the field of building systems that learn from data, is exploding on the Web and elsewhere. Python is a wonderful language in which to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation and an increasing number of machine learning libraries are developed for Python.

Building Machine Learning system with Python shows you exactly how to find patterns through raw data. The book starts by brushing up on your Python ML knowledge and introducing libraries, and then moves on to more serious projects on datasets, Modelling, Recommendations, improving recommendations through examples and sailing through sound and image processing in detail.

Using open-source tools and libraries, readers will learn how to apply methods to text, images, and sounds. You will also learn how to evaluate, compare, and choose machine learning techniques.

Written for Python programmers, Building Machine Learning Systems with Python teaches you how to use open-source libraries to solve real problems with machine learning. The book is based on real-world examples that the user can build on.

Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text’s most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.

Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.

Approach

A practical, scenario-based tutorial, this book will help you get to grips with machine learning with Python and start building your own machine learning projects. By the end of the book you will have learnt critical aspects of machine learning Python projects and experienced the power of ML-based systems by actually working on them.

Who this book is for

This book is for Python programmers who are beginners in machine learning, but want to learn Machine learning. Readers are expected to know Python and be able to install and use open-source libraries. They are not expected to know machine learning, although the book can also serve as an introduction to some Python libraries for readers who know machine learning. This book does not go into the detail of the mathematics behind the algorithms.

This book primarily targets Python developers who want to learn and build machine learning in their projects, or who want to provide machine learning support to their existing projects, and see them getting implemented effectively.

Über den Autor und weitere Mitwirkende

Willi Richert

Willi Richert has a PhD in Machine Learning/Robotics and currently works for Microsoft in the Bing Core Relevance Team. He performs statistical machine translation.



Luis Pedro Coelho

Luis Pedro Coelho is a Computational Biologist: someone who uses computers as a tool to understand biological systems. Within this large field, Luis works in Bioimage Informatics, which is the application of machine learning techniques to the analysis of images of biological specimens. His main focus is on the processing of large scale image data. With robotic microscopes, it is possible to acquire hundreds of thousands of images in a day, and visual inspection of all the images becomes impossible. Luis has a PhD from Carnegie Mellon University, which is one of the leading universities in the world in the area of machine learning. He is also the author of several scientific publications. Luis started developing open source software in 1998 as a way to apply to real code what he was learning in his computer science courses at the Technical University of Lisbon. In 2004, he started developing in Python and has contributed to several open source libraries in this language. He is the lead developer on mahotas, the popular computer vision package for Python, and is the contributor of several machine learning codes..


Produktinformation

  • Format: Kindle Edition
  • Dateigröße: 10716 KB
  • Seitenzahl der Print-Ausgabe: 292 Seiten
  • ISBN-Quelle für Seitenzahl: 1782161406
  • Verlag: Packt Publishing (26. Juli 2013)
  • Verkauf durch: Amazon Media EU S.à r.l.
  • Sprache: Englisch
  • ISBN-10: 1782161414
  • ISBN-13: 978-1782161417
  • ASIN: B00E7NC9D2
  • Text-to-Speech (Vorlesemodus): Aktiviert
  • X-Ray:
  • Word Wise: Nicht aktiviert
  • Verbesserter Schriftsatz: Nicht aktiviert
  • Durchschnittliche Kundenbewertung: Schreiben Sie die erste Bewertung
  • Amazon Bestseller-Rang: #276.655 Bezahlt in Kindle-Shop (Siehe Top 100 Bezahlt in Kindle-Shop)

  •  Ist der Verkauf dieses Produkts für Sie nicht akzeptabel?

Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?

Kundenrezensionen

Noch keine Kundenrezensionen vorhanden.
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Stern
click to open popover