Winning Ways for Your Mathematical Plays: Volume 1 und über 1,5 Millionen weitere Bücher verfügbar für Amazon Kindle. Erfahren Sie mehr
EUR 66,46
  • Alle Preisangaben inkl. MwSt.
Nur noch 1 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon.
Geschenkverpackung verfügbar.
Menge:1
Ihren Artikel jetzt
eintauschen und
EUR 10,25 Gutschein erhalten.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Alle 2 Bilder anzeigen

Winning Ways for Your Mathematical Plays. Volume 1 (Englisch) Taschenbuch – Februar 2001


Alle 2 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Taschenbuch
"Bitte wiederholen"
EUR 66,46
EUR 61,20 EUR 52,91
13 neu ab EUR 61,20 10 gebraucht ab EUR 52,91

Dieses Buch gibt es in einer neuen Auflage:

Winning Ways for Your Mathematical Plays, Volume 4
EUR 50,02
Gewöhnlich versandfertig in 2 bis 4 Wochen.

Wird oft zusammen gekauft

Winning Ways for Your Mathematical Plays. Volume 1 + Winning Ways for Your Mathematical Plays, Volume 2 + Winning Ways for Your Mathematical Plays, Vol. 3
Preis für alle drei: EUR 157,56

Die ausgewählten Artikel zusammen kaufen
Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.


Produktinformation


Produktbeschreibungen

Pressestimmen

" "Winning Ways is an absolute must have for those who are interested in mathematical game theory. It is sure to please any fan of recreational mathematics or simply anyone who is interested in games and how to play them well." -Jacob McMillen, Math Horizons, November 2005 "This new edition confirms the status of the book as a standard reference, which it will continue to be for at least another decade." -Adhemar Bultheel, Bulletin of the Belgian Mathematical Society , December 2005"

Synopsis

In Volume 1, the authors present theories and techniques to "dissect" games of varied structures and formats in order to develop winning strategies. The inclusion of many examples helps the reader to put the mathematical analysis to immediate use. Nearly a quarter of a century ago, three mathematicians created the first and definitive book on mathematical games. Now, this classic is being republished in a completely revised edition, broken down into four volumes to accommodate new developments and to reorganize the material in the most accessible way. In Volume 1, the authors present theories and techniques to "dissect" games of varied structures and formats in order to develop winning strategies. The irreverent yet highly effective style of the book, as reflected in some of the reviews, makes reading a profitable pleasure. The inclusion of many examples helps the reader to put the mathematical analysis to immediate use. Volumes 2-4 will be published in 2001.

In diesem Buch (Mehr dazu)
Einleitungssatz
Who's game for an easy pencil-and-paper (or chalk-and blackboard) game? Lesen Sie die erste Seite
Mehr entdecken
Wortanzeiger
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis | Rückseite
Hier reinlesen und suchen:

Kundenrezensionen

Es gibt noch keine Kundenrezensionen auf Amazon.de
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Sterne

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 8 Rezensionen
36 von 36 Kunden fanden die folgende Rezension hilfreich
Games come in many forms! 24. Februar 2001
Von Charles Ashbacher - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This is the most difficult collection of puns that I have ever read. Of course, that has something to do with the fact that they are surrounded by some of the most complex mathematical analyses of games that you will find. The types of games that are examined are processes that have the following general structure:

1) There are two players.
2) There are many different positions, with one singled out as the starting position.
3) Players move according to very specific rules.
4) The players move alternately.
5) Both players have complete information.
6) There is no chance element to the play. For example, dice are not involved.
7) The first player unable to move loses the game.
8) The game will always move to a state where a player cannot move, which is an ending condition.

The hardest part of the material is the notation, it is unusual and absolutely necessary to understand the treatment of nearly all the games. However, once you get over that, something that took me a couple of passes, the games become interesting. Some of them turn out to be trivial, although at first reading, that would not be your conclusion.
I also would caution you that this is not recreational mathematics in its base form. These games and problems are nontrivial and most require some serious thought, even when the result is simple. As I read through these games and the mathematical examination of the consequences of playing them, I was struck by two semi-profound thoughts.

1) The human mind can create a game out of just about anything. Some of these games are nothing more than colored marks on paper.
2) Even simple rules can generate complex results. However, mathematical analysis gives us powerful tools that inform us how to win, or as the case may be, how not to lose, or to lose as slowly as possible.

Berklekamp and company have created a classic work that is a must read if you want to understand game-like behavior. While not easy, it is some of the most worthwhile material that you will ever read. I read the first edition several years ago and found the going just as interesting the second time.

Published in Journal of Recreational Mathematics, reprinted with permission.
37 von 41 Kunden fanden die folgende Rezension hilfreich
Note - the volumes have been renumbered 1. März 2001
Von Ein Kunde - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This is a classic set of books, and greatly improved from the original version. But if you're looking for the old Volume 1, this book will disappoint. The second edition of Winning Ways is split into 4 separately published books. So THIS Volume 1 is just half of the old Volume 1. Be prepared.
5 von 6 Kunden fanden die folgende Rezension hilfreich
Very Entertaining and Brainstorming 9. Juni 2008
Von Physicsmind - Veröffentlicht auf Amazon.com
Format: Taschenbuch
Surely, no other books on this subject can be better than this series by Berlekamp and Conway, both are masters of the field! There is no doubt to this. But if someone, like a high school math teacher would like to experience the same thrills but at an elementary level, what is better than Mathematical Games and Pastimes by Domoryad, one of The Popular Lectures in Mathematics Vol. 10. Similar entertainment and taste but more accessible. ISBN B0006AYRNK
5 von 7 Kunden fanden die folgende Rezension hilfreich
Geniuses and Games 18. Oktober 2001
Von Mark R. Roop-kharasch - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This book is dazzling. It can be pretty tough going but it is
well worth the effort. You can always tell the work of a genius because it illuminates the landscape and shows us things we have never seen before. I design games for a living and this book rocks! Hackenbush, Nimbers, games with 1/2 move advantage. Well illustrated. ONLY PROBLEM: Where are volumes 2-4?
1 von 1 Kunden fanden die folgende Rezension hilfreich
Improvement! 20. Oktober 2004
Kinder-Rezension - Veröffentlicht auf Amazon.com
Format: Taschenbuch
These new editions have many new and interesting stuff that is not included in the original outdated series. It contains many fresh ideas that the authors recently discovered including those old ones. For old ones the original volume has more to say...
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.