oder
Loggen Sie sich ein, um 1-Click® einzuschalten.
oder
Mit kostenloser Probeteilnahme bei Amazon Prime. Melden Sie sich während des Bestellvorgangs an.
Jetzt eintauschen
und EUR 3,39 Gutschein erhalten
Eintausch
Alle Angebote
Möchten Sie verkaufen? Hier verkaufen
Der Artikel ist in folgender Variante leider nicht verfügbar
Keine Abbildung vorhanden für
Farbe:
Keine Abbildung vorhanden

 
Den Verlag informieren!
Ich möchte dieses Buch auf dem Kindle lesen.

Sie haben keinen Kindle? Hier kaufen oder eine gratis Kindle Lese-App herunterladen.

Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena (Center for the Study of Language and Information Publication Lecture Notes, Band 60) [Englisch] [Taschenbuch]

Jon Barwise , Lawrence Moss
5.0 von 5 Sternen  Alle Rezensionen anzeigen (1 Kundenrezension)
Statt: EUR 21,12
Jetzt: EUR 21,08 kostenlose Lieferung. Siehe Details.
  Alle Preisangaben inkl. MwSt.
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Nur noch 1 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Lieferung bis Samstag, 20. September: Wählen Sie an der Kasse Morning-Express. Siehe Details.

Weitere Ausgaben

Amazon-Preis Neu ab Gebraucht ab
Gebundene Ausgabe EUR 57,79  
Taschenbuch EUR 21,08  

Kurzbeschreibung

13. Juli 1996 Center for the Study of Language and Information Publication Lecture Notes (Buch 60)
Circular analyses of philosophical, linguistic, or computational phenomena have been attacked on the assumption that they conflict with mathematical rigour. Barwise and Moss have undertaken to prove this assumption false. This volume is concerned with extending the modelling capabilities of set theory to provide a uniform treatment of circular phenomena. As a means of guiding the reader through the concrete examples of the theory, the authors have included many exercises and solutions: these exercises range in difficulty and ultimately stimulate the reader to come up with new results. Vicious Circles is intended for use by researchers who want to use hypersets; although some experience in mathematics is necessary, the book is accessible to people with widely differing backgrounds and interests.

Hinweise und Aktionen

  • Englische Fachbücher: jetzt reduziert - Entdecken Sie passend zum Semesterstart bis zum 15. November 2014 ausgewählte englische Fachbücher. Klicken Sie hier, um direkt zur Aktion zu gelangen.


Produktinformation

  • Taschenbuch: 400 Seiten
  • Verlag: The Center for the Study of Language and Information Publications; Auflage: New. (13. Juli 1996)
  • Sprache: Englisch
  • ISBN-10: 1575860082
  • ISBN-13: 978-1575860084
  • Größe und/oder Gewicht: 2,2 x 15 x 22,3 cm
  • Durchschnittliche Kundenbewertung: 5.0 von 5 Sternen  Alle Rezensionen anzeigen (1 Kundenrezension)
  • Amazon Bestseller-Rang: Nr. 381.302 in Fremdsprachige Bücher (Siehe Top 100 in Fremdsprachige Bücher)
  • Komplettes Inhaltsverzeichnis ansehen

Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Pressestimmen

' … a book to learn from.' L'Enseignement Mathématique

Über das Produkt

Many assume that circular phenomena and mathematical rigour are irreconcilable. Barwise and Moss have undertaken to prove this assumption false. Vicious Circles is intended for use by researchers who use hypersets, although the book is accessible to people with widely differing backgrounds and interests.

Eine digitale Version dieses Buchs im Kindle-Shop verkaufen

Wenn Sie ein Verleger oder Autor sind und die digitalen Rechte an einem Buch haben, können Sie die digitale Version des Buchs in unserem Kindle-Shop verkaufen. Weitere Informationen

Kundenrezensionen

4 Sterne
0
3 Sterne
0
2 Sterne
0
1 Sterne
0
5.0 von 5 Sternen
5.0 von 5 Sternen
Die hilfreichsten Kundenrezensionen
3 von 3 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Fasciniating look at a new extension of set theory 18. November 1999
Format:Taschenbuch
This book discusses recent advances in the general field of set theory. The authors study a variant of ZF in which the axiom of foundation is replaced by a new axiom allowing non-well-founded sets. Just as the naturals can be extended to the integers, and the integers to the rationals, and the reals to the complex numbers, in each case by positing new numbers that are the solutions to a class of equations, so this book posits an extension to any model of set theory consisting of the solutions to a class of (systems of) equations having no solutions in ZF. The simplest example is the equation
x = {x},
whose solution,
x = {{{{...}}}} (infinitely deep)
is not permitted in ZF, but exists and is unique in the authors' theory.
The purpose of this extension to ZF is to create a set theory in which certain circular or infinite phenomena from computer science and other fields, e.g. cyclic data streams, can be much more directly modeled than is now possible in ZF. Currently in ZF in order to represent a cyclic data stream one has to develop the aparatus for natural numbers, and then represent the stream to be a function from the natural numbers into some suitable set representing the type of data. But in the author's set theory the stream could be represented as an unfounded set that is the solution to a simple equation, and many of its properties could then be more easily deduced without resort to arithmetic.
I found this book absolutely fascinating, and I highly recommend it to anyone who has had a course in set theory. The theory in the book is quite elegant and satisfying.
I was delighted to learn that there is still room for new variations of the axioms of set theory, a subject I thought (probably naively) had been fairly static for 60 years.
War diese Rezension für Sie hilfreich?
Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)
Amazon.com: 5.0 von 5 Sternen  2 Rezensionen
51 von 54 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Fasciniating look at a new extension of set theory 18. November 1999
Von David Jefferson - Veröffentlicht auf Amazon.com
Format:Taschenbuch|Verifizierter Kauf
This book discusses recent advances in the general field of set theory. The authors study a variant of ZF in which the axiom of foundation is replaced by a new axiom allowing non-well-founded sets. Just as the naturals can be extended to the integers, and the integers to the rationals, and the reals to the complex numbers, in each case by positing new numbers that are the solutions to a class of equations, so this book posits an extension to any model of set theory consisting of the solutions to a class of (systems of) equations having no solutions in ZF. The simplest example is the equation
x = {x},
whose solution,
x = {{{{...}}}} (infinitely deep)
is not permitted in ZF, but exists and is unique in the authors' theory.
The purpose of this extension to ZF is to create a set theory in which certain circular or infinite phenomena from computer science and other fields, e.g. cyclic data streams, can be much more directly modeled than is now possible in ZF. Currently in ZF in order to represent a cyclic data stream one has to develop the aparatus for natural numbers, and then represent the stream to be a function from the natural numbers into some suitable set representing the type of data. But in the author's set theory the stream could be represented as an unfounded set that is the solution to a simple equation, and many of its properties could then be more easily deduced without resort to arithmetic.
I found this book absolutely fascinating, and I highly recommend it to anyone who has had a course in set theory. The theory in the book is quite elegant and satisfying.
I was delighted to learn that there is still room for new variations of the axioms of set theory, a subject I thought (probably naively) had been fairly static for 60 years.
13 von 13 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen First systematic exposition of the Anti-Foundation Axiom 23. April 2006
Von Glyfadiotis - Veröffentlicht auf Amazon.com
Format:Taschenbuch
As the title suggests, this is the first systematic exposition of classic set theory without the axiom of foundation. What replaces it, the anti-foundation axiom, allows sets to be members of themselves and it is this type of circularity that, as the authors claim, lies at the heart of understanding knowledge in interacting systems (like computing machines or game-theoretic agents or Liar-type sentences that refer to themselves).

What makes the whole endeavour work is that this new axiom is still consistent with the rest of ZF theory (a fact that is proved in the book) and in this sense the new theory can be thought as an "extention" of the traditional hierarchical construction of sets.

The book is written in textbook style in that it presents the material methodically and it is reasonably self-contained (a basic understanding of set theory and adequate motivation are enough).

I would have given 4 stars for poor binding and some typos (nothing serious though), but the quality of presentation and the fact that it includes answers to all problems more than make up for it.
Waren diese Rezensionen hilfreich?   Wir wollen von Ihnen hören.
Kundenrezensionen suchen
Nur in den Rezensionen zu diesem Produkt suchen

Kunden diskutieren

Das Forum zu diesem Produkt
Diskussion Antworten Jüngster Beitrag
Noch keine Diskussionen

Fragen stellen, Meinungen austauschen, Einblicke gewinnen
Neue Diskussion starten
Thema:
Erster Beitrag:
Eingabe des Log-ins
 

Kundendiskussionen durchsuchen
Alle Amazon-Diskussionen durchsuchen
   


Ähnliche Artikel finden


Ihr Kommentar