Trigonometric Delights (Princeton Science Library) und über 1,5 Millionen weitere Bücher verfügbar für Amazon Kindle. Erfahren Sie mehr
  • Alle Preisangaben inkl. MwSt.
Nur noch 2 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon.
Geschenkverpackung verfügbar.
Trigonometric Delights (P... ist in Ihrem Einkaufwagen hinzugefügt worden
+ EUR 3,00 Versandkosten
Gebraucht: Sehr gut | Details
Verkauft von reBuy reCommerce GmbH
Zustand: Gebraucht: Sehr gut
Ihren Artikel jetzt
eintauschen und
EUR 3,00 Gutschein erhalten.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Dieses Bild anzeigen

Trigonometric Delights (Princeton Science Library) (Englisch) Taschenbuch – 15. März 2013

Alle 2 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
"Bitte wiederholen"
EUR 17,95
EUR 12,76 EUR 10,97
54 neu ab EUR 12,76 5 gebraucht ab EUR 10,97

Hinweise und Aktionen

  • Sparpaket: 3 Hörbücher für 33 EUR: Entdecken Sie unsere vielseitige Auswahl an reduzierten Hörbüchern und erhalten Sie 3 Hörbücher Ihrer Wahl für 33 EUR. Klicken Sie hier, um direkt zur Aktion zu gelangen.

Wird oft zusammen gekauft

Trigonometric Delights (Princeton Science Library) + Beautiful Geometry + The Pythagorean Theorem: A 4,000-Year History (Princeton Science Library)
Preis für alle drei: EUR 58,68

Die ausgewählten Artikel zusammen kaufen
Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.




"Maor's presentation of the historical development of the concepts and results deepens one's appreciation of them, and his discussion of the personalities involved and their politics and religions puts a human face on the subject. His exposition of mathematical arguments is thorough and remarkably easy to understand. There is a lot of material here that teachers can use to keep their students awake and interested. In short, Trigonometric Delights should be required reading for everyone who teaches trigonometry and can be highly recommended for anyone who uses it."--George H. Swift, American Mathematics Monthly "[Maor] writes enthusiastically and engagingly... Delightful reading from cover to cover. Trigonometric Delights is a welcome addition."--Sean Bradley, MAA Online "Maor clearly has a great love of trigonometry, formulas and all, and his enthusiasm shines through... If you always wanted to know where trigonometry came from, and what it's good for, you'll find plenty here to enlighten you."--Ian Stewart, New Scientist "This book will appeal to a general audience interested in the history of mathematics. I highly recommend [it] to teachers who would like to ground their lessons in the sort of mathematical investigations that were undertaken throughout history."--Richard S. Kitchen, Mathematics Teacher

Über den Autor und weitere Mitwirkende

Eli Maor teaches the history of mathematics at Loyola University in Chicago. He is the author of To Infinity and Beyond, e: The Story of a Number, Venus in Transit, and The Pythagorean Theorem: A 4,000-Year History.

In diesem Buch (Mehr dazu)
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis
Hier reinlesen und suchen:


Es gibt noch keine Kundenrezensionen auf
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Sterne

Die hilfreichsten Kundenrezensionen auf (beta) 1 Rezension
9 von 11 Kunden fanden die folgende Rezension hilfreich
An ideal book for high school mathematics teachers 3. Januar 2014
Von Jordan Bell - Veröffentlicht auf
Format: Taschenbuch
Trigonometry is the study of relations between angles and lengths. Indeed SOH CAH TOA and trigonometric identities are part of the subject, but there is much more to the subject than what you may have learned in high school. If you have trouble remembering whether sin(0)=0 or cos(0)=0, you can fix this either by using your calculator to find that sin(0)=0, or you can memorize sin(0)=0 (which at least stores something in your brain, and if the memorization is done severely enough it will indeed last your life), or finally by having such a comprehensive understanding of trigonometry that mixing up sin(0)=0 and cos(0)=0 would be like forgetting whether sugar or salt tastes sweet.

Learning the history of a subject along with learning the content of the subject itself helps you remember material and makes the material feel alive. It also helps with pacing the rate at which you absorb careful mathematical proofs. After reading even a page or two of a serious proof you need time to let the material settle before going on to the next proof. Many in the discipline of mathematics today think of theorems and proofs as real mathematics and anything else as motivation that one should learn to do without. This is wrong; things are true whether or not someone has written them down and things will wait for us to find them out. Anything that helps people absorb mathematics into their brains is real mathematics. (Thus using a calculator to calculate values of trigonometric functions is a skill but not a mathematical skill as it doesn't involve putting mathematics in your brain, any more than idly chatting while playing a video game is practice in public speaking.) Of course talking about the provenance of the Rhind Papyrus has no mathematical content. But it is fun to read about, and it gives you hooks in your mind to remember things about the papyrus. Likewise, learning the etymology of mathematical terms such as sine and degree gives us more ways to summon mathematics from our memory.

This is not a serious work of history like the works of T. L. Heath, D. T. Whiteside, D. H. Fowler, W. K. Bühler, J. E. Hofmann, André Weil, Lucio Russo or Clifford Truesdell, and a careful writer should not use this as a reference. But it is a fun book that shows the reader many different theorems in trigonometry they may not have seen before, and gives the reader an outline of the history of the subject that can be filled in by reading more detailed books.

If you just skim this book, I encourage you to at least read the chapter on Regiomantanus, which presents a problem posed by him: "At what point on the ground does a perpendicularly suspended rod appear largest?" Aside from being a question that doesn't seem contrived, it can involve the arithmetic mean-geometric mean inequality and calculus.
Ist diese Rezension hilfreich? Wir wollen von Ihnen hören.