Taking Chances: Winning with Probability und über 1,5 Millionen weitere Bücher verfügbar für Amazon Kindle. Erfahren Sie mehr
  • Alle Preisangaben inkl. MwSt.
Auf Lager.
Verkauf und Versand durch Amazon.
Geschenkverpackung verfügbar.
Menge:1
Taking Chances: Winning w... ist in Ihrem Einkaufwagen hinzugefügt worden
+ EUR 3,00 Versandkosten
Gebraucht: Gut | Details
Verkauft von Deal DE
Zustand: Gebraucht: Gut
Kommentar: Dieses Buch ist in gutem, sauberen Zustand. Seiten und Einband sind intakt.
Ihren Artikel jetzt
eintauschen und
EUR 2,09 Gutschein erhalten.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Alle 2 Bilder anzeigen

Taking Chances: Winning with Probability (Englisch) Taschenbuch – 29. September 2005

3 Kundenrezensionen

Alle 5 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Taschenbuch
"Bitte wiederholen"
EUR 24,61
EUR 10,39 EUR 7,55
11 neu ab EUR 10,39 6 gebraucht ab EUR 7,55 1 Sammlerstück ab EUR 11,32

Hinweise und Aktionen

  • Große Hörbuch-Sommeraktion: Entdecken Sie unsere bunte Auswahl an reduzierten Hörbüchern für den Sommer. Hier klicken.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.



Produktinformation


Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Amazon.de

Most of us enjoy pleasant surprises and know that many of life's greatest rewards are obtained by taking chances. This is true whether we are playing the lottery or deciding whether or not to buy flowers when we are unsure if it might be our girlfriend's birthday. So, if you enjoy taking chances and winning--and it's a safe bet that you do--this book helps you do so in a more intelligent way.

John Haigh is Reader in Mathematics at Sussex University, and his book covers a remarkably large number of topics. He tells you how to take chances playing the football pools and about the role of chance in sports such as tennis, golf, and soccer. What points in tennis are most important? If a soccer player gets a yellow card in 10 percent of games and is suspended for one game whenever he has accumulated two yellow cards, how often is he suspended? What is the chance that a team that scores the first goal goes on to win? He also writes about casino games, bridge, and Monopoly, explaining why orange is the best color of Monopoly property to own.

The book is practical rather than theoretical. It is written for anyone with a curious mind, aged perhaps 16 and up. It is not a textbook, but introduces concepts, such as random walk and game theory, that are familiar to professional mathematicians. There are technical appendices and test-yourself quizzes for readers who want to explore more. A bonus is advice on the lottery. However, with typical vividness, he cautions that if the lottery had begun with the ancient druids, and your ancestors had bought 50 tickets every week for the last 5000 years, then by now your family could expect to have won the jackpot just once! --Richard Weber, Amazon.co.uk -- Dieser Text bezieht sich auf eine vergriffene oder nicht verfügbare Ausgabe dieses Titels.

Pressestimmen

Review from previous edition 'the volume is ideally suited for readers with virtually no training in mathematics, but who are curious about how actually to assess the odds of things like winning a single game at lawn tennis or on which hands in poker one should raise ... This is a book to ponder, savour, study - and give to your mathematically illiterate friends' The Times Higher Education Supplement '(an) impressively comprehensive new book on the wonders of probability' The Sunday Telegraph

In diesem Buch

(Mehr dazu)
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis
Hier reinlesen und suchen:

Kundenrezensionen

4.7 von 5 Sternen
5 Sterne
2
4 Sterne
1
3 Sterne
0
2 Sterne
0
1 Sterne
0
Alle 3 Kundenrezensionen anzeigen
Sagen Sie Ihre Meinung zu diesem Artikel

Die hilfreichsten Kundenrezensionen

1 von 1 Kunden fanden die folgende Rezension hilfreich Von Dr. Chrilly Donninger am 4. Juni 2014
Format: Taschenbuch Verifizierter Kauf
Die Wurzel der Statistik ist das Glücksspiel. Berufsspieler konnten sich nicht erklären, warum manche Kombinationen häufiger vorkommen als andere. Sie kontaktierten die berühmtesten Mathematiker ihrer Zeit, damit die Licht ins Dunkel bringen.
Der Autor hat Beispiele aus der Welt des Glücksspiels zusammen getragen um grundlegende statistische Ideen zu präsentieren. Nachdem ich in Mathematischer Statistik dissertiert habe, kannte ich diese statistischen Konzepte. Ich fand das Buch trotzdem sehr lesenswert, weil mich die Spiele interessiert haben. Ein Teil davon ist very British (z.B. Cricket). Vieles ist aber auch außerhalb des Empire bekannt. Haigh beschränkt sich nicht nur auf klassische Spiele, sondern behandelt etwa auch die Statistik der Millionenshow. Das Buch ist sehr gut lesbar. Es war in den letzten Tagen meine Gute-Nacht-Lektüre.
Über den Untertitel "Winning with Probability" kann man diskutieren. Eigentlich zeigt Haigh, dass man bei den meisten Spielen am besten nicht spielt. Das Motto ist eher: Wie verliere ich am wenigsten. Man sollte sich generell kein "How To" Buch erwarten, sondern eine nette Erkundungsreise in die Welt des Spieles und der Statistik.
Als Statistikprofi kann ich nicht wirklich beurteilen, wie schwer/leicht sich ein Mathematikmuffel beim Lesen tut. Ich kann mir allerdings kaum vorstellen, dass man die Ergebnisse noch anschaulicher und leichter verständlich bringen kann. Das Buch ist Populärwissenschaft im besten Sinn des Wortes.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Format: Taschenbuch
While the book is mainly written on probability in games, which has already been covered in many books, the author coveres the basics of probability and coin tossing very nicely. He also covers the theory of dices thoroughly and approaches "Games with few choices" (Game Theory) with great enthusiasm. Finally the chapter "Probability for Lawyers" with it's terms such as the prosecutors fallacy and the defence attorne's fallacy are a must read for every person interested in the fascinating subject of probabiliy. PS: second edition covers now Bayes's theorem (previous readers criticised the author of missing this important theory in the first issue)
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Von Steve Knight am 27. Juni 2000
Format: Gebundene Ausgabe
An excellent account of probability theory. Whilst definitely geared towards gambling it also sheds new light on some fundamental probability topics.
The text sometimes does get a little numerical - at the expense of the theoretical - but this is not necessarily a bad thing.
The only question I have about the book is why is there no mention of Bayes? Surely a fundamental contributor to probability theory.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 5 Rezensionen
13 von 14 Kunden fanden die folgende Rezension hilfreich
Loose thinking can cost money... 19. Dezember 2004
Von Franco Arda - Veröffentlicht auf Amazon.com
Format: Taschenbuch
While the book is mainly written on probability in games, which has already been covered in many books, the author coveres the basics of probability and coin tossing very nicely. He also covers the theory of dices thoroughly and approaches "Games with few choices" (Game Theory) with great enthusiasm. Finally the chapter "Probability for Lawyers" with it's terms such as the prosecutors fallacy and the defence attorne's fallacy are a must read for every person interested in the fascinating subject of probabiliy. PS: second edition covers now Bayes's theorem (previous readers criticised the author of missing this important theory in the first issue)
16 von 19 Kunden fanden die folgende Rezension hilfreich
Best broad introduction to probability for real world games 27. Mai 2007
Von David J. Aldous - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
There are many textbooks on college-level mathematical probability, but a smaller number of what I call "textbooks lite" aimed at a reader who is willing to work to learn some interesting parts of a subject. This wonderful book teaches the basic calculations in mathematical probability, but with a combination of breadth and concreteness unrivaled by any other book I know. The book consists of short sections, each giving verbal discussion of problems involving probability, games of chance and related material, and deriving solutions using only arithmetic and occasional elementary combinatorics and algebra. It covers an impressive breadth of topics: lotteries, dice and card games, casino games, TV show games, racetrack betting, some game theory (Prisoners Dilemma, Hawk-Dove games, Male-Female reproductive strategies), combined with the basic laws of probability and the familiar birthday and coupon collector's problems. Part of the content is distinctly British rather than American (cricket and snooker; premium bonds; the particular TV shows). In addition to familiar types of elementary probability calculations such as the craps example, there are more elaborate stories and calculations involving strategies as games progress. I particularly like the chapter giving a gentle yet entertaining introduction to two-person game theory.
9 von 10 Kunden fanden die folgende Rezension hilfreich
Taking Chances 9. September 2000
Von Richard Eltzroth - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This is a very practical book on probability using common games (cards, dice, coin-toss, etc.) as examples. Explanations are thorough without being too technical. The appendices go into more mathematical detail for those so inclined. The author is British so everything has that slant (money in pounds and pence, Grand National, and so on), but that's not a problem. There's a lot of information packed into the 330 pages of this paperback since the type is fairly small.
11 von 13 Kunden fanden die folgende Rezension hilfreich
You bet 27. Juni 2000
Von Steve Knight - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
An excellent account of probability theory. Whilst definitely geared towards gambling it also sheds new light on some fundamental probability topics.
The text sometimes does get a little numerical - at the expense of the theoretical - but this is not necessarily a bad thing.
The only question I have about the book is why is there no mention of Bayes? Surely a fundamental contributor to probability theory.
2 von 3 Kunden fanden die folgende Rezension hilfreich
Probability explained through games 1. September 2010
Von A. Panda - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This book has an extremely practical approach, since in each chapter it explains several games and their related probabilities. These related probabilities are of the sort of: when is it advisable to double the bet, when is it advisable to let your opponent "eat" one of your chips in backgammon, how long will it take you on average to get your chip back on the game board, which streets in Monopoly are more likely to be visited by other players and which have a better payback, how high is your chance to win at the lottery, at sports pools, at the races, how can you minimize your losses at casino games like roulette, how likely is it that you will be winning after "n" games or how likely is it that a tennis player will win the match if he has a probability of "p" to win one point.

This approach gives the book a special character and keeps your interest on the subject; on the other hand, there is little room for theoretical explanations of the probability basics, so you need to do the calculations done by the author over and over until you figure out the principles behind his math. In the appendices there are a few explanations, but definitely not enough, specially regarding the different probability distributions and when each is better suited. This is not a textbook... The fact that the theory is back in appendices and not in the main text makes the reading a bit more difficult, since you need to jump back and forth between the chapter and the appendix. I tried reading the appendices first but these are not stand alone theory chapters, but refer to specific problems in the main text, which by the way can come from different chapters (different games may require the same probability basics); so you cannot avoid the back and forth between one or more appendices and one or more chapters, add a pencil and a notebook to follow the calculations and you cannot read anymore in bed... Another problem was that some of the British games were unfamiliar to me (like cricket, bridge, etc.), I do not know the rules, what is required to win the game or how the points are assigned, so understanding the underlying probabilities was somewhat difficult. If you are a beginner in this topic, I strongly recommend reading The Drunkard's Walk: How Randomness Rules Our Lives (Vintage) first. This books does not require that you perform any calculations but explains the very basics in an easy to understand manner.

The chapter on game theory was really interesting; I had already read a bit about these games but had not seen the math that is applied to their solutions. The games explained in this chapter are very simple, so the calculations can be followed easily.

I bought this book mainly because Mr. Plous, author of The Psychology of Judgment and Decision Making (McGraw-Hill Series in Social Psychology) made it quite clear that most people (myself included) are poor at probability and statistical analysis and that people would make more "rational" decisions had they some basic knowledge in these topics. After emphasizing this fact, Mr. Plous did not consider it necessary to explain the math he used in his examples, so I decided to get myself some literature on probability. I am not sure I can take now more rational decisions, but I certainly know now a bit of probability, specially related to gaming, e.g. I had never bothered to calculate the preestablished margin for the casino at the roulette game, now I can calculate how to bet in order to loose my money more slowly and play longer or take my chances in one shot with a 47.5% chance of doubling my fortune.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.