Storm Blueprints und über 1,5 Millionen weitere Bücher verfügbar für Amazon Kindle. Erfahren Sie mehr
  • Alle Preisangaben inkl. MwSt.
Auf Lager.
Verkauf und Versand durch Amazon.
Geschenkverpackung verfügbar.
Menge:1
Storm Blueprints: Pattern... ist in Ihrem Einkaufwagen hinzugefügt worden
Gebraucht: Gut | Details
Verkauft von Warehouse Deals
Zustand: Gebraucht: Gut
Kommentar: Gebrauchsspuren. Schrumpffolie fehlt, Aktivierungscodes für Online-Bonusinhalte können fehlen bzw. abgelaufen sein. Mittlere Falte oder mittlerer Knick am Buchrücken. Amazon-Kundenservice und Rücknahmegarantie (bis zu 30 Tagen) bei jedem Kauf.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Alle 2 Bilder anzeigen

Storm Blueprints: Patterns for Distributed Real-time Computation (Englisch) Taschenbuch – 26. März 2014


Alle 2 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Taschenbuch
"Bitte wiederholen"
EUR 39,58
EUR 39,58 EUR 23,99
5 neu ab EUR 39,58 3 gebraucht ab EUR 23,99

Hinweise und Aktionen

  • Große Hörbuch-Sommeraktion: Entdecken Sie unsere bunte Auswahl an reduzierten Hörbüchern für den Sommer. Hier klicken.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.



Produktinformation


Produktbeschreibungen

Über den Autor und weitere Mitwirkende

P. Taylor Goetz is an Apache Storm committer and release manager and has been involved with the usage and development of Storm since it was first released as open source in October of 2011. As an active contributor to the Storm user community, Taylor leads a number of open source projects that enable enterprises to integrate Storm into heterogeneous infrastructure. Presently, he works at Hortonworks where he leads the integration of Storm into Hortonworks Data Platform (HDP). Prior to joining Hortonworks, he worked at Health Market Science where he led the integration of Storm into HMS' next generation Master Data Management platform with technologies including Cassandra, Kafka, Elastic Search, and the Titan graph database. Brian O'Neill is a husband, hacker, hiker, and kayaker. He is a fisherman and father as well as big data believer, innovator, and distributed computing dreamer. He has been a technology leader for over 15 years and is recognized as an authority on big data. He has experience as an architect in a wide variety of settings, from startups to Fortune 500 companies. He believes in open source and contributes to numerous projects. He leads projects that extend Cassandra and integrate the database with indexing engines, distributed processing frameworks, and analytics engines. He won InfoWorld's Technology Leadership award in 2013. He authored the Dzone reference card on Cassandra and was selected as a Datastax Cassandra MVP in 2012 and 2013. In the past, he has contributed to expert groups within the Java Community Process (JCP) and has patents in artificial intelligence and contextbased discovery. He is proud to hold a B.S. in Computer Science from Brown University. Presently, Brian is Chief Technology Officer for Health Market Science (HMS), where he heads the development of their big data platform focused on data management and analysis for the healthcare space. The platform is powered by Storm and Cassandra and delivers realtime data management and analytics as a service.

In diesem Buch

(Mehr dazu)
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis | Rückseite
Hier reinlesen und suchen:

Kundenrezensionen

Es gibt noch keine Kundenrezensionen auf Amazon.de
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Sterne

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 7 Rezensionen
2 von 2 Kunden fanden die folgende Rezension hilfreich
Great addition to growing collection of Storm guides 14. Juli 2014
Von Rob - Veröffentlicht auf Amazon.com
Format: Taschenbuch
I had the chance to catch the authors speak at a Storm Meetup in NYC and it is clear that they know their stuff. I’ve been running a Kafka-Storm topology in production for over a year now, and I learned a number of new ways to think about it from this book.

The book is full of all kinds of interesting applications of Storm, including applications to AI, Ad-tech, and even Lambda architecture implementation. Users who are new to Storm will have little trouble picking up the material, and experienced users will enjoy the more advanced applications-- I particularly enjoyed the graph analysis with Titan chapter.
1 von 1 Kunden fanden die folgende Rezension hilfreich
The first three chapters are great to give details on the core functionality of Storm 13. Dezember 2014
Von Count Rodrigo - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
The first three chapters are great to give details on the core functionality of Storm, but anything beyond that is just too specific to be of use to a larger audience. It would have been better to have more gritty details about how testing, tick tuples, auto scaling, etc.
2 von 3 Kunden fanden die folgende Rezension hilfreich
An informative cookbook-style walk through the Storm ecosystem 12. Juli 2014
Von Andrew Montalenti - Veröffentlicht auf Amazon.com
Format: Taschenbuch
Storm Blueprints is written by P. Taylor Goetz, a Storm comitter and release manager for Apache who currently works at HortonWorks, and Brian O’Neill, the CTO at Health Market Science (HMS), a Storm user and open source contributor.

It is a “cookbook with recipes” explanation of integrating Storm with various other technologies.

It is a whirlwind tour of integrating Storm with several other important open source technologies: Kafka combines with XMPP to create a push architecture atop streams; Cassandra and Titan are used for graph processing over Twitter data; Druid is used for analyzing financial market data; Storm and Hadoop are combined in a mini Lambda Architecture for advertising analytics. Throughout all of this, several auxiliary tools are briefly introduced, including Zookeeper, Gremlin, Puppet, Vagrant, Whirr, HDFS, storm-yarn, etc.

If this sounds like a lot of ground to cover in a single book, it is. It is powerful to see Storm combined successfully with so many other technologies, along with the sample source code to prove it. This book serves as a reminder of just how much diversity there is in the current open source ecosystem around Hadoop and Storm, and how many production-ready and not-so-production-ready design patterns there are available to an engineer working in this space.

The book serves as an impressive jog across the Storm-related Big Data terrain, and shows that, as a platform, Storm can serve an important role in integrating disparate technologies scalably and predictably.
good start for planning out a storm / lamda architecture 14. August 2014
Von shog - Veröffentlicht auf Amazon.com
Format: Kindle Edition Verifizierter Kauf
This book has a lot of "how" without a whole lot of "what". Wanting to learn about Trident, I had to go to other websites for a simple explanation of what Trident is and what it does, and then I could go to Storm Blueprints for how to use it. That said, this book is so up to date it's steaming, it calls out a nice array of recommendations for technology that you need to set up a distributed storm topology on AWS with lamda architecture. Technologies covered include Trident, Druid, Hadoop, Pig, TinkerPop, Vagrant, more. This book is good about having code examples, setup instructions and practical use cases.
Storm could be explained better 29. Mai 2015
Von Dimitri K - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
The book talks about many technologies, like Kafka, Titan etc., but not too much about Storm itself. It is good to read for general information, but I would prefer to learn Storm better. For learning kafka I would buy a book about Kafka.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.