• Alle Preisangaben inkl. MwSt.
Nur noch 1 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon.
Geschenkverpackung verfügbar.
Menge:1
Simulation and Inference ... ist in Ihrem Einkaufwagen hinzugefügt worden
+ EUR 3,00 Versandkosten
Gebraucht: Sehr gut | Details
Zustand: Gebraucht: Sehr gut
Kommentar: unbenutzt, keine Markierungen, jedoch einige Lagerspuren. Rechnung mit Mwst. erhalten Sie automatisch per e-mail
Ihren Artikel jetzt
eintauschen und
EUR 14,00 Gutschein erhalten.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Dieses Bild anzeigen

Simulation and Inference for Stochastic Differential Equations: With R Examples (Springer Series in Statistics) (Englisch) Gebundene Ausgabe – 26. Mai 2008


Alle 3 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Gebundene Ausgabe
"Bitte wiederholen"
EUR 117,69
EUR 108,18 EUR 55,00
10 neu ab EUR 108,18 5 gebraucht ab EUR 55,00

Hinweise und Aktionen

  • Große Hörbuch-Sommeraktion: Entdecken Sie unsere bunte Auswahl an reduzierten Hörbüchern für den Sommer. Hier klicken.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.


Produktinformation


Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Pressestimmen

From the reviews:

"It is a pleasure to strongly recommend the text to the intended audience.The writing style is effective, with a relatively gentle but accurate mathematicalcoverage and a wealth of R code in the sde package." (Thomas L. Burr, Technometrics, V51, N3)

"The book focuses on simulation techniques and parameter estimation for SDEs. With the examples is included a detailed program code in R.It is written in a way so that it is suitable for (1) the beginner who meets stochastic differential equations (SDEs) for the first time and needs to do simulation or estimation and (2) the advanced reader who wants to know about new directions on numerics or inference and already knows the standard theory.… There is also an interesting small chapter on miscellaneous topics which contains the Akaike information criterion, non-parametric estimation and change-point estimation. Essentially all examples are complemented by program codes in R. The last chapter focuses on aspects of the language that are used throughout the book. Generally the codes are, without much effort, translatable into other languages." (Roger Pettersson, American Mathematical Society 2009, MR2410254 (Review) 60H10 (62F10 65C30))

"This book succeeds at giving an overview of a complicated topic through a mix of simplified theory and examples, while pointing the reader in the right direction for more information.… This would be a good introductory or reference text for a graduate level course, where the instructor’s knowledge extends substantially beyond the book.… data examples are abundant and give the book the feeling of being practical while showcasing when methods succeed and fail." (Dave Cambell, Biometrics, 65, 326-339, March 2009)

"Overall, this is a good book that fills in several gaps. In addition to collecting and summarizing an enormous quantity of theory, it introduces some novel techniques for inference. Statisticians and mathemeticians who work with time series should find a place on their shelves for this book."  (Journal of Statistical Software - Book Reviews)

"Diffusion processes, described by stochastic differential equations, are extensively applied in many areas of scientific research. There are many books of the subject with emphasis on either theory of applications. However, there is not much literature available on practical implementation of these models. Therefore, this book is welcome and helps fill a gap. … the thorough coverage of univariate models provided by the book is also useful. These models are building blocks for larger models, and it is good to have a handy reference to their properties, such as parameter restrictions and stationary distributions." (Arto Luoma, (International Statistical Review, 2009, 77, 1)

"In summary, this book is indeed quite unique: it gives a concise methodological survey with strong focus on applications and provides many ready-to-use recipes. The theory is always illustrated with detailed examples incorporating various parametric diffusion models. This text is a recommended acquisition for practitioners both in the industry and in applied disciplines of academia." (Marco Frei, ETH Zurich, JASA March2010, v105(489)

"To summarize, this book fills several gaps in the literature, summarizing the theory of sto- chastic processes and introducing some new estimation techniques. The main strength of the book is the breadth of its scope. It covers the basic theory of the stochastic processes, appli- cations, an implementation in concrete com- puter codes. An empirical economist would find Chapter 3 most important, while for a theorist it will be useful to concentrate on Chapter 1." (Suren Basov, La Trobe University, Economic Records, v86(272), March 2010)

“…This book is indeed quite unique; it gives a concise methodological survey with strong focus on applications and provides many ready-to- use recipes. The theory is always illustrated with detailed examples incorporating various parametric diffusion models. This text is a recommended acquisition for practitioners both in the industry and in applied disciplines of academia.” (Journal of the American Statistical Association, Vol. 105, No. 489)

“This book focuses on simulation techniques and parameter estimation for SDEs. It gives an overview of these topics through a mix of simplified theory and examples. The book is written in a way to be suitable for the beginner and the advanced reader who want to know about new directions in numerics or inference.” (Rainer Schlittgen, Zentralblatt MATH, Vol. 1210, 2011)

Synopsis

This book is unique because of its focus on the practical implementation of the simulation and estimation methods presented. The book will be useful to practitioners and students with only a minimal mathematical background because of the many R programs, and to more mathematically-educated practitioners. Many of the methods presented in the book have not been used much in practice because the lack of an implementation in a unified framework. This book fills the gap. With the R code included in this book, a lot of useful methods become easy to use for practitioners and students. An R package called "sde" provides functions with easy interfaces ready to be used on empirical data from real life applications. Although, it contains a wide range of results, the book has an introductory character and necessarily does not cover the whole spectrum of simulation and inference for general stochastic differential equations.The book is organized into four chapters. The first one introduces the subject and presents several classes of processes used in many fields of mathematics, computational biology, finance and the social sciences.

The second chapter is devoted to simulation schemes and covers new methods not available in other publications. The third one focuses on parametric estimation techniques. In particular, it includes exact likelihood inference, approximated and pseudo-likelihood methods, estimating functions, generalized method of moments, and other techniques. The last chapter contains miscellaneous topics like nonparametric estimation, model identification and change point estimation. The reader who is not an expert in the R language will find a concise introduction to this environment focused on the subject of the book. A documentation page is available at the end of the book for each R function presented in the book.


In diesem Buch

(Mehr dazu)
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis
Hier reinlesen und suchen:

Kundenrezensionen

Es gibt noch keine Kundenrezensionen auf Amazon.de
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Sterne

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 3 Rezensionen
0 von 1 Kunden fanden die folgende Rezension hilfreich
Four Stars 31. März 2015
Von Mingotti Nicola - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe Verifizierter Kauf
- good starting point for learning somethig practical about S.D.E.
- Hands on approach
- R code
0 von 2 Kunden fanden die folgende Rezension hilfreich
Great book, worth the money 18. Februar 2013
Von Leo C. Polansky - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe Verifizierter Kauf
I got a lot out of this book. Written well, covers a good range of topics. Quality of book (binding, paper, cover) also good.
0 von 1 Kunden fanden die folgende Rezension hilfreich
Five Stars 8. März 2015
Von pei - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe Verifizierter Kauf
Good
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.