• Alle Preisangaben inkl. MwSt.
Nur noch 1 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon.
Geschenkverpackung verfügbar.
Menge:1
Schaum's Outline of Tenso... ist in Ihrem Einkaufwagen hinzugefügt worden
+ EUR 3,00 Versandkosten
Gebraucht: Gut | Details
Verkauft von worldofbooksde
Zustand: Gebraucht: Gut
Kommentar: The book has been read but remains in clean condition. All pages are intact and the cover is intact. Some minor wear to the spine.
Ihren Artikel jetzt
eintauschen und
EUR 1,73 Gutschein erhalten.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Dieses Bild anzeigen

Schaum's Outline of Tensor Calculus (Schaum's Outlines) (Englisch) Taschenbuch – 1. April 1988

4 Kundenrezensionen

Alle 2 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Taschenbuch
"Bitte wiederholen"
EUR 18,65
EUR 16,26 EUR 5,42
8 neu ab EUR 16,26 10 gebraucht ab EUR 5,42

Dieses Buch gibt es in einer neuen Auflage:


Hinweise und Aktionen

  • Große Hörbuch-Sommeraktion: Entdecken Sie unsere bunte Auswahl an reduzierten Hörbüchern für den Sommer. Hier klicken.


Wird oft zusammen gekauft

Schaum's Outline of Tensor Calculus (Schaum's Outlines) + Schaum's Outlines Vector Analysis
Preis für beide: EUR 38,93

Die ausgewählten Artikel zusammen kaufen
Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.



Produktinformation

  • Taschenbuch: 224 Seiten
  • Verlag: Mcgraw Hill Book Co (1. April 1988)
  • Sprache: Englisch
  • ISBN-10: 0070334846
  • ISBN-13: 978-0070334847
  • Größe und/oder Gewicht: 20,8 x 1 x 27,4 cm
  • Durchschnittliche Kundenbewertung: 4.8 von 5 Sternen  Alle Rezensionen anzeigen (4 Kundenrezensionen)
  • Amazon Bestseller-Rang: Nr. 270.795 in Fremdsprachige Bücher (Siehe Top 100 in Fremdsprachige Bücher)
  • Komplettes Inhaltsverzeichnis ansehen

Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Synopsis

The primary tool in the theory of relativity, tensor calculus is also important in continuum mechanics and differential geometry. This book takes a nonabstract, easy-to-understand approach, developing in numerous examples and solved problems those topics most pertinent to physics and engineering students.

Über den Autor und weitere Mitwirkende

McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide

Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?


In diesem Buch

(Mehr dazu)
Einleitungssatz
A study of tensor calculus requires a certain amount of background material that may seem unimportant in itself, but without which one could not proceed very far. Lesen Sie die erste Seite
Mehr entdecken
Wortanzeiger
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis | Rückseite
Hier reinlesen und suchen:

Kundenrezensionen

4.8 von 5 Sternen
5 Sterne
3
4 Sterne
1
3 Sterne
0
2 Sterne
0
1 Sterne
0
Alle 4 Kundenrezensionen anzeigen
Sagen Sie Ihre Meinung zu diesem Artikel

Die hilfreichsten Kundenrezensionen

6 von 6 Kunden fanden die folgende Rezension hilfreich Von Raymond Jensen am 10. November 1999
Format: Taschenbuch
So far, I've covered the first 5 chapters. Very easy to understand, and plenty of example problems. What more could you ask for?
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
4 von 4 Kunden fanden die folgende Rezension hilfreich Von Ein Kunde am 29. Juni 1999
Format: Taschenbuch
Tensors are a booger to learn, even with a great guide like this. It's just hard. But this is the best guide available. More completely worked out problems would be nice. A very very solid grounding in vector analysis and linear algebra is required before tackling this book, however.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
3 von 3 Kunden fanden die folgende Rezension hilfreich Von Carlos Cancino Chacón am 9. Juni 2013
Format: Taschenbuch Verifizierter Kauf
Das Buch ist sehr deutlich geschrieben. Deswegen kann man gut die Grundlagen verstehen. Aber die Beispiele sind vielleicht ein bisschen einfach und inhaltlich ist es fast nur in Richtung Physik (Klassische Mechanik und Relativität) orientiert. Es ist trotzdem eine gute Einführung für fortgeschrittenere Bücher, wie das von Bishop.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
1 von 2 Kunden fanden die folgende Rezension hilfreich Von andrea schuhmann am 26. April 2013
Format: Taschenbuch Verifizierter Kauf
a l l e s t o p!!! D AN K E!!! alles zu meiner Zufriedenheit. produkt entsprach der Beschreibung.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 40 Rezensionen
65 von 69 Kunden fanden die folgende Rezension hilfreich
I'm Rating this A THOUSAND STARS 12. Juli 2002
Von "bigfoot_12" - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This Study Guide functions properly. If right now, you are reading the title "Tensor Calculus" and wish you understood it someday. But have absolutely no idea what a tesnor of rank zero is. GET THIS BOOK
My main goal was to understand General Relativity. But as you know, the mathematics of General Relativity is nothing but Tensor Calculus. I was particularly intrigued by the mysteries of the Riemann Curvature Tensor. The key to General Relativity. As soon as I purchased this book, I started studying Chapter 8, the "Riemannian Curvature" not knowing anything about the previous chapters. Hopeless I eventually turned to chapter 1 and gradually climed up the ladder. Then came my Golden Times in Tensor Calculus. I cracked the mysteries of the Riemann Curvature Tensor and at last I turned to General Relativity. I'm currently studying black holes thanks to this book.
44 von 47 Kunden fanden die folgende Rezension hilfreich
Best Place To Start 5. Januar 2001
Von "gsibbery" - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This is probably the clearest ontoduction to tensor analysis that is currently on the market. It makes a quite difficult and messy subject seem pretty straightforward. It's best to know your vector calc in and out before attempting this book, but it's a godsend compared to some of the other texts out on the market today. A great guide for engineering and physics students and the price can't be beat.
38 von 40 Kunden fanden die folgende Rezension hilfreich
Good Book, But Hard As A Rabid Gorilla 29. Juni 1999
Von Ein Kunde - Veröffentlicht auf Amazon.com
Format: Taschenbuch
Tensors are a booger to learn, even with a great guide like this. It's just hard. But this is the best guide available. More completely worked out problems would be nice. A very very solid grounding in vector analysis and linear algebra is required before tackling this book, however.
20 von 21 Kunden fanden die folgende Rezension hilfreich
Great for self-study, useful for relativity studies 16. Dezember 2010
Von gengogakusha - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
Frustrated by the treatments of tensor calculus in relativity books, I turned to this book and was not disappointed - it gets the job done in a logical, concise and admirably clear manner. I was skeptical at first as I like to understand things algebraically and this book is all about the traditional components based approach. But I've become a convert since this is what one needs to understand those tensor-based relativity books and as I discovered much to my chagrin, one can understand vector spaces, their duals, and multilinear functions till those cows come home without gaining much insight or any proficiency with all those tensor equations decorating relativity books.

Consider this: the book has 13 chapters, whose collective page total is about 213 pages but excluding the Solved Problems is less than 100 pages. So excluding pages devoted to solved problems, exercises, etc. the chapters look like this.

-- Chs 1 & 2 provide about 8 pp. of mathematical preliminaries (Einstein summation convention and some linear algebra).

-- Ch 3 defines and elucidates General Tensors, zipping you through the necessary details of coordinate transformations, the Jacobian matrix and Jacobian, the contravariant / covariant topic (minus the algebraic explanation, unfortunately), includes a nice section on Invariants (only p. 28, mind you), and ends with the Stress Tensor and Cartesian tensors, all in about 10 pages!

-- Ch 4 covers the basics of tensor algebra and tests for tensor character, in a mere 4 pages. For me those first 4 chapters were the painful part but really it was only about 23 pp.

After that things really picked up because the topics became more interesting:

-- Ch. 5 (8 pp: the Metric Tensor;

-- Ch. 6 (8 pp): the Derivative of a Tensor;

-- Ch. 7 (7 pp): basic Riemannian Geometry of Curves;

-- Ch 8 (6 pp): Riemannian Curvature, including the Ricci tensor (!!);

-- Ch 9 (6 pp): Spaces of Constant Curvature including the Einstein tensor (!!);

-- Ch 10 (12 pp.): Tensors in Euclidean geometry; and

-- Ch 12 (10 pp): Tensors in Special Relativity (!!).

I found Ch 12 to be a concise, lucid discussion of some essential aspects of special relativity from a tensor point of view.

-- Ch 11 (5 pp) deals with Tensors in Classical Mechanics, which I only skimmed quickly.

-- Ch 13 (12 pp), the final chapter, provides a brief introduction to tensor fields on manifolds (aka the modern approach) and is, I think, the weakest, least helpful chapter. Section 13.5 Tensors on Vector Spaces, in particular, struck me as way too short for such a central topic. Having studied the material in this chapter elsewhere, I find it hard to believe one could really understand the material from such a brief overview. But at least you can see "what you're up against". For this material I thnk one needs to study a differential geometry book such as Tu's lucid and concise An Introduction to Manifolds (Universitext), John Lee's long but self-study friendly Introduction to Smooth Manifolds, Jeffrey Lee's new Manifolds and Differential Geometry (Graduate Studies in Mathematics) (includes fiber bundles) or even Bishop and Goldberg's classic Tensor Analysis on Manifolds. However, I found Bishop & Goldberg to be a bit dated and a bit too concise, except as a review / consolidation of what I'd learned elsewhere (but it's superbly written and well worth reading!).

Of course, if you want examples and solved problems, Kay's book has plenty: and let's face it, the only way to acquire an intuitive feel for tensor equations or become remotely facile in tensor operations is through examples and (solved) problems. When I first read the book (a bit too quickly), I skipped many of these but on reviewing the material, I have come to appreciate them.

So initially I thought Kay's book was a poor choice (boring, too applied, too elementary) but having gained more experience, I have come to see that this book, although not perfect (what a surprise!), really is one very good - and economical - book on tensor calculus, both geared to self-study and especially well-suited for relativity enthusiasts.

Lastly, here are two books on tensors that I found to be unhelpful for relativity studies: A Brief on Tensor Analysis (Undergraduate Texts in Mathematics) and Introduction to Tensor Calculus and Continuum Mechanics although they might suit those interested in continuum mechanics.
32 von 36 Kunden fanden die folgende Rezension hilfreich
As an Outline... 27. November 2003
Von Ein Kunde - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This is not a book to learn tensor calculus from. It is an outline only, no greath depth or insight is presented. This book works perfectly as a supplement to a course in tensor calculus, or as a quick reference for the various techniques and concepts involved, provided one is already somewhat familiar with the material. It would be possible to learn the basics of tensor calculus from this book with some effort, and reflection on the implications of the concepts dealt with, however as a complete course in the subject it is insufficient, and I believe intentionally so.
The more modern aspects of tensor analysis on manifolds are largely ignored in this treatment, but also intentionally so, an approach which I found useful practically.
The book does not aim to be an all-inclusive course in the applications of tensor concepts to all areas of mathmatics, but rather a quick-reference guide supplementing more complete treatments, and as such, is largely successful.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.