Python Scripting for Computational Science und über 1,5 Millionen weitere Bücher verfügbar für Amazon Kindle. Erfahren Sie mehr


oder
Loggen Sie sich ein, um 1-Click® einzuschalten.
oder
Mit kostenloser Probeteilnahme bei Amazon Prime. Melden Sie sich während des Bestellvorgangs an.
Jetzt eintauschen
und EUR 12,43 Gutschein erhalten
Eintausch
Alle Angebote
Möchten Sie verkaufen? Hier verkaufen
Der Artikel ist in folgender Variante leider nicht verfügbar
Keine Abbildung vorhanden für
Farbe:
Keine Abbildung vorhanden

 
Beginnen Sie mit dem Lesen von Python Scripting for Computational Science auf Ihrem Kindle in weniger als einer Minute.

Sie haben keinen Kindle? Hier kaufen oder eine gratis Kindle Lese-App herunterladen.

Python Scripting for Computational Science (Texts in Computational Science and Engineering) [Englisch] [Gebundene Ausgabe]

Hans Petter Langtangen
3.5 von 5 Sternen  Alle Rezensionen anzeigen (2 Kundenrezensionen)
Preis: EUR 53,45 kostenlose Lieferung. Siehe Details.
  Alle Preisangaben inkl. MwSt.
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Nur noch 1 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Lieferung bis Donnerstag, 25. September: Wählen Sie an der Kasse Morning-Express. Siehe Details.

Weitere Ausgaben

Amazon-Preis Neu ab Gebraucht ab
Kindle Edition EUR 37,42  
Gebundene Ausgabe EUR 53,45  
Taschenbuch EUR 53,45  

Kurzbeschreibung

2009 3540739157 978-3540739159 3rd ed. 2008. Corr. 2nd printing 2009

With a primary focus on examples and applications of relevance to computational scientists, this brilliantly useful book shows computational scientists how to develop tailored, flexible, and human-efficient working environments built from small scripts written in the easy-to-learn, high-level Python language. All the tools and examples in this book are open source codes. This third edition features lots of new material. It is also released after a comprehensive reorganization of the text. The author has inserted improved examples and tools and updated information, as well as correcting any errors that crept in to the first imprint.


Hinweise und Aktionen

  • Studienbücher: Ob neu oder gebraucht, alle wichtigen Bücher für Ihr Studium finden Sie im großen Studium Special. Natürlich portofrei.

  • Englische Fachbücher: jetzt reduziert - Entdecken Sie passend zum Semesterstart bis zum 15. November 2014 ausgewählte englische Fachbücher. Klicken Sie hier, um direkt zur Aktion zu gelangen.


Wird oft zusammen gekauft

Python Scripting for Computational Science (Texts in Computational Science and Engineering) + Rapid GUI Programming with Python and QT: The Definitive Guide to PyQt Programming (Prentice Hall Open Source Software Development)
Preis für beide: EUR 83,76

Die ausgewählten Artikel zusammen kaufen

Kunden, die diesen Artikel angesehen haben, haben auch angesehen


Produktinformation

  • Gebundene Ausgabe: 756 Seiten
  • Verlag: Springer; Auflage: 3rd ed. 2008. Corr. 2nd printing 2009 (2009)
  • Sprache: Englisch
  • ISBN-10: 3540739157
  • ISBN-13: 978-3540739159
  • Größe und/oder Gewicht: 24 x 16,2 x 3,3 cm
  • Durchschnittliche Kundenbewertung: 3.5 von 5 Sternen  Alle Rezensionen anzeigen (2 Kundenrezensionen)
  • Amazon Bestseller-Rang: Nr. 196.569 in Fremdsprachige Bücher (Siehe Top 100 in Fremdsprachige Bücher)
  • Komplettes Inhaltsverzeichnis ansehen

Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Pressestimmen

From the reviews of the second edition:

"This book addresses primarily a CSE (computational science and engineering) audience. … gives a clear and detailed account on the ways in which the surprisingly powerful Python language may aid the CSE community." (H. Muthsam, Monatshefte für Mathematik, Vol. 151 (4), 2007)

Synopsis

The goal of this book is to teach computational scientists how to develop tailored, flexible, and human-efficient working environments built from small programs (scripts) written in the easy-to-learn, high-level language Python. The focus is on examples and applications of relevance to computational scientists: gluing existing applications and tools, e.g. for automating simulation, data analysis, and visualization; steering simulations and computational experiments; equipping old programs with graphical user interfaces; making computational Web applications; and creating interactive interfaces with a Maple/Matlab-like syntax to numerical applications in C/C++ or Fortran.In short, scripting with Python makes you much more productive, increases the reliability of your scientific work and lets you have more fun - on Unix, Windows and Macintosh. All the tools and examples in this book are open source codes. The third edition is compatible with the new NumPy implementation and features updated information, correction of errors, and improved associated software tools.

Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?


In diesem Buch (Mehr dazu)
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis
Hier reinlesen und suchen:

Kundenrezensionen

4 Sterne
0
3 Sterne
0
1 Sterne
0
3.5 von 5 Sternen
3.5 von 5 Sternen
Die hilfreichsten Kundenrezensionen
7 von 8 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Python Vademecum for Computational Scientists. 3. Mai 2007
Format:Gebundene Ausgabe
As every compuational scientist knows, different tasks require different programming languages or even environments, and basically you have to find a combination of languages that work for you and just help you in your job. This volume provides an introdcution to Python.

The book does not claim to be written for novices to programming. It is intended as a guide to Python for scientists and engineers who want to do everyday tasks with the aid of a scripting language, and so make the handling of data, the postprocessing or just sorting through their old data files a lot easier.

The brilliant thing is that this book does not waste your time with the usual and tedious introduction to programming concepts. There is an introduction about some basics and on what makes Python different from other languages. The author then starts off with something he aptly calls a "Scientific Hello-World Example": reading a number form the command line, and returning its sine to the standard output. This example is then discussed in detail and expanded within a few pages to the use of functions and classes, file I/O and the handling of data files. In a later section, the basics of GUIs are introduced in a similar fashion.

The author continues giving examples from scientific computing everyday-life, like using classes for handling simulation parameters, functions and data, or wrapping code from other languages, so that it can be called from Python. There is also a lot of material about wirting graphical user interfaces, and about handling data files.

So, if you are a computational scientist and you are interested in Python and want to have a quick and to-the-point introduction about how to actually do things, this is the book for you to start with.
War diese Rezension für Sie hilfreich?
7 von 14 Kunden fanden die folgende Rezension hilfreich
2.0 von 5 Sternen mühsam 31. März 2007
Format:Gebundene Ausgabe
Für einen Python Kurs habe ich versucht, ein Konzept und Unterlagen zusammenzustellen. Dabei bin ich auf dieses Buch gestoßen.

Mein erster Eindruck beim bzw. nach dem Lesen des Buches war: So hätte ich nie Python gelernt ...

Das Buch ist chaotisch und wirkt irgendwie bunt zusammengewürfelt.

Das erste Kapitel bietet einige gute Hinweise, wieso denn Python als Scriptsprache (v.a. im wissenschaftlichen Umfeld) so gut ist. Aber jemand, der gerade erst mit der Sprache beginnt, kann mit den gebotenen Beispielen wenig anfangen. Noch schlimmer wird es im zweiten Kapitel. Das wirkt wie eine willkürliche Ansammlung von Beispielen, die beim Lernen der Sprache helfen sollen. Dieser Abschnitt wirkt vollkommen deplaziert. Dafür war das dritte Kapitel - eine systematisch(er)e Python Einführung - eindeutig besser.

Danach geht's ans Eingemachte - NumPy und Fortran/C/C++ Integration. Ich muss sagen, dass all' diese Dinge nie meine Stärke waren. Vielleicht habe deswegen nicht viel davon mitbekommen. Vielleicht ist aber auch das Buch nicht ganz unschuldig. Aber: Trotzdem eine der besseren Einführungen, die ich zu dem Thema gelesen habe.

Es folgt ein Kapitel über GUI Programmierung. Ich muss sagen, dass ich das nur überflogen habe. Ich halte Tkinter nun mal für eine Plage und verwende lieber PyGtk oder PyQt. Ähnlich ging es mir beim Teil über Web Interfaces - ich habe ihn als ziemlich entbehrlich empfunden. Das Thema ist sicher schwierig zu behandeln, da hier ziemlich viel noch ziemlich jung ist (Django und Co).

Dafür war der nachfolgende Teil - "Advanced Python" - wieder ganz gut und setzt dort fort, wo das buch zuvor bei den Grundlagen aufgehört hat.
Lesen Sie weiter... ›
War diese Rezension für Sie hilfreich?
Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)
Amazon.com: 4.5 von 5 Sternen  11 Rezensionen
165 von 170 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Convincing demonstration of Python's value in science 15. Oktober 2004
Von C. Dunn - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe
The author has 2 main goals:

1) To improve the productivity of scientists familiar with specific software systems (especially Matlab, Maple, and Mathematica) by teaching them to "glue" applications together.

2) To advocate Python as the preferred "glue" language. In his own words, "I hope to convince computational scientists having experience with Perl that Python is a preferable alternative, especially for large long-term projects."

He has certainly done a creditable job. As an expert in computational differential equations, he neglects neither efficiency nor correctness, while stressing both simplicity and reliability. In this sense, he has done a great service to the Python community.

The question is: What justifies the purchase of his book?

The answer is: Chapters 4, 9, and 10.

Contents:

1. Introduction--26pp

Very convincing arguments.

2. Getting Started With Python Scripting--38pp

Interesting examples.

3. Basic Python--56pp

A too-quick tutorial. Go to python dot org instead.

4. Numerical Computing in Python--48pp

Stellar explanations of vectorized array operations.

5. Combining Python with Fortran, C, and C++--36pp

Details use of Fortran2Py and SWIG. Mentions many alternatives.

6. Introduction to GUI Programming--70pp

Useful examples of Tkinter/pmw widgets.

7. Web Interfaces and CGI Programming--24pp

Good source of ideas.

8. Advanced Python--132pp

Deep and extensive. Includes: option parsing, regular expressions, data persistence and compression, object-oriented programming, exceptions, generic programming, efficiency.

9. Fortran Programming with NumPy Arrays--32pp

All about efficiency and re-use.

10. C and C++ Programming with NumPy Arrays--40pp

More about efficiency. NumPy C API, C++ objects, and SCXX.

11. More Advanced GUI Programming--73pp

Tedious discussion of both Web and standalone GUIs. BLT, canvas, cgi.

12. Tools and Examples--70pp

Excellent examples of PDE solvers, with a powerful GUI, but quite long and tedious.

A. Setting up the Required Software Environment--16pp

Wonderfully specific installation instructions!

B. Elements of Software Engineering--50pp

Python's strength! Very practical advice on modularity, documentation, coding style, regression-testing, version-control.

Strengths:

+ Downloadable py4cs package, esp. numpytools module

+ Great advice everywhere, e.g. CGI checklist, Pythonic programming, and trouble-shooting.

+ Concrete evidence for most assertions.

+ Very attractive presentation. Sturdy, high-quality cover, binding and pages. Brief, elegant code fragments (except in Chapter 12). Readable prose. No wasted space.

+ Available as 5MB pdf file, after purchase of hardcopy. Very nice.

+ Slides, installation instructions, and errata also at web site. Very professional.

My peeves:

- Not enough tables to be a useful manual.

- On p.428(#7) he points out that handling a raised exception is very slow. However, when I time his example with a positive argument, the try-except version is 20% faster (b/c the if clause is skipped), so he is actually giving bad advice for the general case. Luckily, he contradicts himself later, on page 685: "Exceptions should be used instead of if-else tests." The best advice: Avoid common exceptions in inner loops.

- The 10-page index is not as great as it at first seems. (See Martelli's Python in a Nutshell for a better one.)

- Pure interface functions should 'raise NotImplementedError', rather than 'return'.

- Exceptions should never be trapped mindlessly with 'except:'. That would hide your own SyntaxErrors!

- Too many exercises. (It's published as a textbook.) Since there are no answers, the exercises are useless for non-students. (See Lutz's Learning Python for effective exercises with answers.)

Overall rating:

This contains the best information on numerical programming in Python that I've seen. Though expensive, it could easily be your only Python book, given the excellent online documenation already available.
12 von 12 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen *The* reference for folks who work with Matlab 26. Juli 2009
Von G. Jaouen - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe
I'm giving this book five stars because it was basically written for me. I don't mean that literally, of course. I say that because the usual methods of googling for answers and reading the manual do not work when you are trying to push the limits of what a tool is capable of doing. I do numerical computations for a variety of things -- finding patterns in large data sets, automating data collection and analysis, converting raw serial output into convenient CSV, plotting multidimensional datasets etc. Over the years, I have collected a large number of productivity habits with Matlab, which allows me to do ridiculously convoluted things in a short period of time. You just have to read the introduction of any Python manual to understand why I am switching from Matlab to Python. The problem is -- what will replace all these productivity habits? They need to be replaced with "Pythonic" habits, something that can take years of practice.

The beauty about Langtangen's book is that it runs through every one of those techniques. Instead of giving a basic example (what your google search would have provided) or a complete list of, ahem, useless techniques (what the manual would have provided), you get exactly what a seasoned data analyst needs to know to get moving with state-of-the-art commands. The author also discusses optimizations and alternatives in each chapter.

The book is also the best source for explaining *why* NumPy should be used by people working with large datasets. Folks love to create toolkits for Python, but some of these are a list of non-intuitive shortcuts that don't provide a substantial improvement over basic Python. Langtangen goes through the pain of explaining the benefits of the package (chapter 4.1.4), so that you can decide for yourself if NumPy is useful for your application.

I will not comment on the parts of the book that deal with C and FORTRAN integration because I leave that to more able programmers. I also will not comment on the extensive GUI building chapters because I do not build GUIs. I will point out, though, that I have derived full value out of this book simply by reading, and re-reading chapters 2, 3, 4 and 8. Some will argue that there is too much "basic Python" in these chapters for the whole to be considered advanced computational science -- my opinion is that even when the author describes "basic Python", his examples and intuition make it so that even one who has read a couple of reference books cover-to-cover will learn something about using "basic Python" to perform numerical analysis in a more efficient way. In fact, the book is a testament to doing really convoluted things in a really compact and elegant manner!
59 von 78 Kunden fanden die folgende Rezension hilfreich
3.0 von 5 Sternen Python for Science Academics and Engineers, NOT programmers 3. Juni 2005
Von Braddock Gaskill - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe|Verifizierter Kauf
I bought this book as an experienced programmer and Unix user expecting more of a "Numerical Recepies in Python" emphasis on the efficient implementation of algorithms which happen to be in Python. I should have paid more attention to the description.

This book is really more of a "Grad Student's Guide to Everyday Python Usage". I imagine it would be very valuable to a mathematics Grad student without too much programming or shell experience, looking for an alternative to Matlab. However, there is very little "Computational Science" in this book. Do NOT expect a cookbook of high performance algorithm implementations.

The book is a very verbose 700+ pages, all in an unexciting academic LaTeX format. The author works through idiom after idiom for accomplishing different tasks in fairly stand-alone sub-sections without much of a feeling of conceptual "flow" between them. It sort of feels like reading through the author's personal lab notes that he took everytime he learned a new language feature or trick.

If you are an experienced programmer, you will quickly get impatient with the verbose presentation that emphasizes idioms and examples instead of fundamental concepts and syntax reference tables. But, if you are an experienced programmer, you are not the target audience for this book.

Braddock Gaskill
7 von 8 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Great Suppliment to Numerical methods 25. Juli 2006
Von Andy R. Terrel - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe
When I first got ahold of this book I had just finished learning all the gory details of good numerical codes. But when developing tests for simple cases I found that development went way too slow, so someone suggested I learn Python. This book provides a great demonstration of how python can supplement your existing codes. Either by organizing the tests, formatting output, or just adding pretty interfaces.

This book contains a lot of the necessary extras that a scientist or engineer must do to get his work going or finished, which is too pedantic to be taught in most courses. It shows the power of Python over some other scripting languages for this purpose. It is definitely one of the best references on my book shelf.
4 von 4 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Outstanding introduction to Python and Numpy 15. Mai 2010
Von Rich - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe
I've bought what seems to (my wife) be every Python book out there and I can't tell you how sick I am of spam, spam, spam code! (trivial and obfuscated Python code examples with a common theme focused around one Monty Python skit or another...) Spam code seems to prevail in other Python books.

Here finally is a book with code examples that are very clear, are immediately useful to the serious programmer and filled with real life discourse on relative performance differences between Python and other languages that have a reputation for speed. There are clear examples of 'number crunching', producing images and even video animations, hooks into other scientific packages such as MathLab, etc.

If you are interested in really learning Python, want to come away from an hour or twos worth of coding experience with a module or two that you can use tomorrow and are not interested in code examples extolling Monty Python silliness, then this is the book for you.

While this book is about twice as expensive as many of my other Python books, I wish I had purchased this one first. Even though I've been using Python, seemingly every day, for two years, I kept finding nuggets in this book with what seemed to be every turn of the page. My focus right now is processing extremely large data sets of binary data but I'll soon be looking at image processing and I know I'll be reaching for this book over and over again. Don't hesitate! Just buy the book!
Waren diese Rezensionen hilfreich?   Wir wollen von Ihnen hören.
Kundenrezensionen suchen
Nur in den Rezensionen zu diesem Produkt suchen

Kunden diskutieren

Das Forum zu diesem Produkt
Diskussion Antworten Jüngster Beitrag
Noch keine Diskussionen

Fragen stellen, Meinungen austauschen, Einblicke gewinnen
Neue Diskussion starten
Thema:
Erster Beitrag:
Eingabe des Log-ins
 

Kundendiskussionen durchsuchen
Alle Amazon-Diskussionen durchsuchen
   


Ähnliche Artikel finden


Ihr Kommentar