EUR 26,95
  • Statt: EUR 27,95
  • Sie sparen: EUR 1,00 (4%)
  • Alle Preisangaben inkl. MwSt.
Auf Lager.
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Menge:1
Python for Data Analysis:... ist in Ihrem Einkaufwagen hinzugefügt worden
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Alle 2 Bilder anzeigen

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (Englisch) Taschenbuch – 26. Oktober 2012

4.8 von 5 Sternen 4 Kundenrezensionen

Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Taschenbuch
"Bitte wiederholen"
EUR 26,95
EUR 23,94 EUR 27,54
54 neu ab EUR 23,94 7 gebraucht ab EUR 27,54

Wird oft zusammen gekauft

  • Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
  • +
  • Learning Python
  • +
  • Python Cookbook
Gesamtpreis: EUR 115,85
Die ausgewählten Artikel zusammen kaufen

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre E-Mail-Adresse oder Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.



Produktinformation


Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Über den Autor und weitere Mitwirkende

Wes McKinney is the main author of pandas, the popular open source Python library for data analysis. Wes is an active speaker and participant in the Python and open source communities. He worked as a quantitative analyst at AQR Capital Management before founding an enterprise data analysis company, Lambda Foundry, in 2012. He graduated from MIT with an S.B. in Mathematics.


Kundenrezensionen

4.8 von 5 Sternen
5 Sterne
3
4 Sterne
1
3 Sterne
0
2 Sterne
0
1 Sterne
0
Alle 4 Kundenrezensionen anzeigen
Sagen Sie Ihre Meinung zu diesem Artikel

Top-Kundenrezensionen

Format: Taschenbuch Verifizierter Kauf
Meine bisherige Erfahrung mit O'Reilly Büchern war eher durchwachsen: Oft werden entweder sehr starke Grundlagen vorausgesetzt oder es geschehen Sprünge zwischen Kapiteln die kaum nachzuvollziehen sind. Nicht so in diesem Buch. Wes McKinney hat es wirklich geschafft einen sorgfältigen Aufbau ohne Lücken zu Papier zu bringen, ohne dabei in Details unterzugehen. Das Buch beginnt mit NumPy um Grundlagen zu schaffen, erklärt sehr sorgfältig die Datenformate wie Dataframes und arbeitet sich langsam aber sicher zu recht komplexen Themengebieten hoch.

Kann das Buch wirklich nur empfehlen - auch als Nachschlagewerk.
Kommentar 7 von 7 haben dies hilfreich gefunden. War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden
Format: Taschenbuch
Wes McKinney, der lead-developer von Pandas, hat ein grundlegendes Buch geschrieben. Grundlegend für alle, die "scientific computing" mit python betreiben wollen. Die open source Python Pakete NumPy, SciPy, Matplotlib, iPython, und eben auch Pandas sind dafür unentbehrlich, und werden ausfuehrlich dargestellt -- von der Installation, zur Anwendung. Schön ist, dass es viele praxisnahe Beispiele im Buch samt Muster-Code gibt - z.B. zu den Themen Aggregierung, Daten, die sich zeitlich verändern oder Sortierung. Ich habe das Buch erst wenige Tage, und habe zumindest schon auf iPython 13.1 aktualisiert!
Kommentar 4 von 4 haben dies hilfreich gefunden. War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden
Format: Taschenbuch Verifizierter Kauf
Ich war wirklich überrascht. Ich hatte Numpy und Co. schon seit mehreren Jahren benutzt und war angenehm überrascht. Das Buch ist voller extrem nützlicher Tips und Trickts für den Alltag. Die Pandas Beispiele sind sehr gut gewählt und bieten eine prima Grundlage für eigene Analysen. Learning-By-Example und Hans-On stehen hier im Vordergrund und sind allemal besser als trockene Theorie. Hut ab!
Kommentar 4 von 6 haben dies hilfreich gefunden. War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden
Format: Taschenbuch Verifizierter Kauf
The book provided the structure and system the online help of these packages cannot provide, although I miss a deeper inside in matplotlib and a chapter in data structure and analysis theory
Kommentar 1 von 3 haben dies hilfreich gefunden. War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: HASH(0x97bf5d80) von 5 Sternen 109 Rezensionen
95 von 102 Kunden fanden die folgende Rezension hilfreich
HASH(0x976fcb94) von 5 Sternen A book about tools that fills a need in scientific computing 29. Oktober 2012
Von Jason Wirth - Veröffentlicht auf Amazon.com
Format: Taschenbuch
Python For Data Analysis is a book about tools. Python is an excellent general purpose language that has developed some niche applications, science being one of them due to some excellent libraries such as NumPy, SciPy, IPython, Matplotlib, and increasingly Pandas -- which Wes created. Collectively these tools form the basis of the "scientific computing stack" and are utilized by anyone who gets their hands dirty with data.

To steal from the book, Wes states, "This book is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is NOT (author's emphasis) an exposition on analytical methods using Python as the implementation language."

This is a book for any level of professional, researcher, or academic working with data. You could be a beginner who wants to get started, a professional coming from discipline rooted in another language like Matlab, or even someone seasoned in data-manipulation with Python who wants to get more work done in less time with greater ease.

While Pandas is the main focus of the book, sections dedicated to IPython (a shell for interactive execution) and NumPy (Matlab-like vectorized arrays) means there is something for everyone. For example, you might already use IPython, but not to its fullest potential. Wes shows how to be more efficient using the interactive debugger.

Amazon limits their ratings to 5-stars, but if I gave a star for every time I learned something new that made my analysis easier this book would be off the charts!
161 von 187 Kunden fanden die folgende Rezension hilfreich
HASH(0xa63e3f6c) von 5 Sternen dive into pandas and NumPy 23. Oktober 2012
Von R. Friesel Jr. - Veröffentlicht auf Amazon.com
Format: Kindle Edition
Wes McKinney's "Python for Data Analysis" (O'Reilly, 2012) is a tour pandas and NumPy (mostly pandas) for folks looking to crunch "big-ish" data with Python. The target audience is not Pythonistas, but rather scientists, educators, statisticians, financial analysts, and the rest of the "non-programmer" cohort that is finding more and more these days that it needs to do a little bit-sifting to get the rest of their jobs done.

First, two warnings:

1. **This book is not an introduction to Python.** While McKinney does not assume that you know *any* Python, he isn't exactly going to hold your hand on the language here. There is an appendix ("Python Language Essentials") that beginners will want to read before getting too far, but otherwise you're on your own. ("Lucky for you Python is executable pseudocode"?)

2. **This book is not about theories of data analysis.** What I mean by that is: if you're looking for a book that is going to tell you the *types* of analyses to do, this is not that book. McKinney assumes that you already know, through your "actual" training, what kinds of analyses you need to perform on your data, and how to go about the computations necessary for those analyses.

That being said: McKinney is the principal author on pandas, a Python package for doing data transformation and statistical analysis. The book is largely about pandas (and NumPy), offering overviews of the utilities in these packages, and concrete examples on how to employ them to great effect. In examining these libraries, McKinney also delves into general methodologies for munging data and performing analytical operations on them (e.g., normalizing messy data and turning it into graphs and tables). McKinney also delves into some (semi) esoteric information about how Python works at very low levels and ways to optimize data structures so that you can get maximum performance from your programs. McKinney is clearly knowledgeable about these libraries, about Python, and about using those tools effectively in analytical software.

So where do I land on "Python for Data Analysis"? If you're looking for a book that discusses data analysis in a broad sense, or one that pays special attention to the theory, this isn't that book. If you're looking for a generalist's book on Python--also not this book. However, if you've already selected Python as your analytical tool (and it sounds like it's more/less the de facto analytical tool in many circles) then this just might be the perfect book for you.

---

DISCLOSURE: I received an electronic copy of this book from the publisher in exchange for writing a review.
113 von 131 Kunden fanden die folgende Rezension hilfreich
HASH(0xa63e3528) von 5 Sternen A tutorial in need of editorial work; not comprehensive; not a useful reference 30. März 2013
Von Richard C. Yeh - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
I think this book is genuinely trying to be helpful, by giving an extended tutorial on the pandas library; but the tutorial covers only selected topics, and needs to be supplemented with a comprehensive function reference. The narrative also needs to be cut with the help of a strict editor.

If you are trying to decide whether to learn to use the pandas library, this book is for you. It starts with an example of how python and the pandas library can make it easy to do some basic analyses of data, and then develops more specialized chapters: summary statistics, data storage, data transformation (merging and joining), plotting, aggregation, time-series, special considerations for financial or economic data, advanced special topics.

Once I decided to use the pandas library, the book suddenly became less useful. The author has a verbose pedagogical style, and the book never departs from its tutorial perspective. Functions are introduced with examples but no definitions, and it's hard to find the rare summaries of functions, function arguments, or discussion suggesting when to use one method instead of another.

If you want to do something very close to what's done in an example, it's easy to follow along. Once you want to do something not emphasized or covered by an example, there is no guidance, no reference or dictionary section to give any hint about where I might search next --- google will probably direct you to stackoverflow.com, or the official pandas documentation site.

For example, suppose you have loaded your data into a DataFrame, and you want to use another column as the index. The book has several pages on the useful reindex() method, but that method is for resampling the data. Instead, you want set_index() --- but the book only mentions set_index() in passing, without saying what it does, far from the section where the DataFrame index is covered.

There have been some attempts to remedy this, with "quick reference cards" for pandas --- but they are in general also not comprehensive.

Finally, there is little guidance on the kinds of problems where you would be better served using numpy or some other tool instead of pandas. (There are a few paragraphs on areas where you might not want to use python.)

[Update: by mid 2013, the API reference at the official pandas documentation has the comprehensive listings that I was looking for --- see http pandas.pydata.org pandas-docs stable api.html . By version 0.12.0, all of the various function arguments seem to have been described with examples of acceptable settings. Also, the data analytical work (as opposed to cleaning and organization) has moved to the related statsmodels project, which requires pandas. So, to use that, it's important to be familiar with pandas.]

To the editor:

On many pages, there is some comment, phrasing, or trivial fact that I would have eliminated. Example:

"In some cases, a table might not have a fixed delimiter, using whitespace or some other pattern to separate fields. In these cases, ..."

"In part for legacy reasons (much earlier versions of pandas), DataFrame's join method ..."

"In my experience, having to align data by hand (and worse, having to verify that data is aligned) is a far too rigid and tedious way to work. It is also rife with potential for bugs due to combining misaligned data."

This is a technical publication, not a narrative!

Many of the code examples break across physical and PDF pages, which create small interruptions when reading. This may be hard to avoid when about half the text space is occupied by worked examples.

last line on page 129: a b c d a b c d e

first line on page 130: 0 0 1 2 3 0 0 1 2 3 4
41 von 49 Kunden fanden die folgende Rezension hilfreich
HASH(0x976fde28) von 5 Sternen Python and Pandas 21. Oktober 2012
Von kiwi_trader - Veröffentlicht auf Amazon.com
Format: Kindle Edition Verifizierter Kauf
I'm a C++ programmer who discovered Python in August and have started a Stats course where everyone else is using Stata or R. So I'm reading this book fast. I've tried to read other software books on my kindle before so I was a bit nervous. But the formatting here is excellent. There are times when Wes uses multiple columns and you have to figure out the flow with python line numbers but its generally good and readable. The indexing is also excellent - finally someone who was thinking about e-readers.

So I am not a Python, Numpy or Pandas expert.

I took the $5 upgrade at O'Reilly so I have downloaded a pdf for backup viewing and also get future enhancements to the book.

The material appears good and the coverage thorough. I've been working through the Language Essentials as well and its clarified a couple of things I misunderstood after earlier Python books so at this point I'll give it 5 stars. I'll re-review later if I come to a different conclusion.
14 von 15 Kunden fanden die folgende Rezension hilfreich
HASH(0xa63e3da4) von 5 Sternen Only data manipulation and descriptive statistics 13. April 2013
Von I Teach Typing - Veröffentlicht auf Amazon.com
Format: Taschenbuch Vine Kundenrezension eines kostenfreien Produkts ( Was ist das? )
If you already know some python and are looking for better ways to slice, dice, blend, sort and order data or do basic descriptive statistics and graphics you probably will be very pleased. If you are looking to this book to turn Python into a one stop shop for getting data ready for analysis and taking it through to a complete project you will probably not be happy. It is odd to have Data Analysis in the title of a book and not even include the most commonly done inferential statistics, like t-tests or ANOVA, in the index. Take the content of this book and mix it with a couple good books on R or SAS and you will have enough to actually do data analysis....
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.