• Alle Preisangaben inkl. MwSt.
Nur noch 3 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Menge:1
Pattern Classification (E... ist in Ihrem Einkaufwagen hinzugefügt worden
+ EUR 3,00 Versandkosten
Gebraucht: Sehr gut | Details
Verkauft von Nearfine
Zustand: Gebraucht: Sehr gut
Kommentar: Leichte Gebrauchsspuren. Lieferung voraussichtlich innerhalb von 2-3 Wochen.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Alle 3 Bilder anzeigen

Pattern Classification (Electrical & Electronics Engr) (Englisch) Gebundene Ausgabe – 21. November 2000

5 von 5 Sternen 4 Kundenrezensionen

Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Gebundene Ausgabe
"Bitte wiederholen"
EUR 175,00
EUR 74,99 EUR 63,74
78 neu ab EUR 74,99 12 gebraucht ab EUR 63,74

Dieses Buch gibt es in einer neuen Auflage:

Pattern Classification
EUR 153,60
Dieser Artikel ist noch nicht erschienen.

Wird oft zusammen gekauft

  • Pattern Classification (Electrical & Electronics Engr)
  • +
  • Pattern Recognition and Machine Learning (Information Science and Statistics)
Gesamtpreis: EUR 259,65
Die ausgewählten Artikel zusammen kaufen

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre E-Mail-Adresse oder Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.



Produktinformation


Mehr über die Autoren

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Pressestimmen

"...it provides a good introduction to the subject of Pattern Classification." (Journal of Classification, September 2007)
 
"...a fantastic book! The presentation...could not be better, and I recommend that future authors consider...this book as a role model." (Journal of Statistical Computation and Simulation, March 2006)
 
"...strongly recommended both as a professional reference and as a text for students..." (Technometrics, February 2002)
 
"...provides information needed to choose the most appropriate of the many available technique for a given class of problems." (SciTech Book News, Vol. 25, No. 2, June 2001)
 
"I do not believe anybody wishing to teach or do serious work on Pattern Recognition can ignore this book, as it is the sort of book one wishes to find the time to read from cover to cover!" (Pattern Analysis & Applications Journal, 2001)
 
"This book is the unique text/professional reference for any serious student or worker in the field of pattern recognition." (Mathematical Reviews, Issue 2001k)
 
"...gives a systematic overview about the major topics in pattern recognition, based whenever possible on fundamental principles." (Zentralblatt MATH, Vol. 968, 2001/18)
 
"attractively presented and readable" (Journal of Classification, Vol.18, No.2 2001)

"...provides information needed to choose the most appropriate of the many available technique for a given class of problems." (SciTech Book News, Vol. 25, No. 2, June 2001)
 
"This book is the unique text/professional reference for any serious student or worker in the field of pattern recognition." (Mathematical Reviews, Issue 2001k)
 
"...strongly recommended both as a professional reference and as a text for students..." (Technometrics, February 2002)
 
"...gives a systematic overview about the major topics in pattern recognition, based whenever possible on fundamental principles." (Zentralblatt MATH, Vol. 968, 2001/18)
 
"attractively presented and readable" (Journal of Classification, Vol.18, No.2 2001)

Synopsis

Pattern classification is the assignment of a physical object or event to one of several pre-specified categories. It is the basic theory underlying pattern recognition by computers. With the spread of neural network research, pattern classification has experienced a significant increase in both interest and research activity. This edition has been completely revised, enlarged and formatted in two colour. It is a systematic account of the major topics in pattern recognition, based on the fundamental principles. It includes extensive examples and exercises, and is accompanied by a solutions manual.

Alle Produktbeschreibungen


In diesem Buch

(Mehr dazu)
Einleitungssatz
Bayesian decision theory is a fundamental statistical approach to the problem of pattern classification. Lesen Sie die erste Seite
Mehr entdecken
Wortanzeiger
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis | Rückseite
Hier reinlesen und suchen:

Kundenrezensionen

5.0 von 5 Sternen
5 Sterne
4
4 Sterne
0
3 Sterne
0
2 Sterne
0
1 Sterne
0
Alle 4 Kundenrezensionen anzeigen
Sagen Sie Ihre Meinung zu diesem Artikel

Top-Kundenrezensionen

Format: Gebundene Ausgabe
Dieses Buch ist einfach ein Muß für jeden, der sich in irgendeiner Weise für Mustererkennung interessiert. Es spezialisiert sich nicht wie meisten Abhandlungen zum diesem Themenkomplex auf ein bestimmtes Verfahren, sondern gibt einen breitgefächerten Überblick. Es werden sowohl statistische Methoden behandelt, als auch Ansätze die Neuronale Netze und ähnliches verwenden. Natürlich fehlen auch die heißgeliebten Hidden-Markov-Models nicht. Das Buch verwendet in den Code-Beispielen eine Pseudo-Programmiersprache, die sich leicht in die vom Leser gewünschte Sprache übersetzen läßt (ähnlich wie PDL in McConnor's Code Complete). Übungen am Ende jedes Kapitels eignen sich gut zur Vertiefung des gelesenen und werden in Zukunft sicher einige Professoren dazu veranlassen dieses Werk in ihre Vorlesungen zu integrieren. Oft sehr hilfreich ist auch die Erläuterung wichtiger mathematischer Grundlagen im Anhang. Alles in allem ein Buch über ein Thema an der fodersten Front der Forschung. Einzigartig!
Kommentar 11 von 11 haben dies hilfreich gefunden. War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden
Format: Gebundene Ausgabe
Hervorragendes Lehrbuch über die wesentlichen Techniken der Pattern Classification (Bayessche Klassifikation, Parameterschätzung, Neuronale Netze, Training, etc.). Die Mathematik wird gut erklärt, grundlegende Kenntnisse aus dem (Ingenieur-)Studium vorausgesetzt. Sehr zu empfehlen!
Kommentar 6 von 6 haben dies hilfreich gefunden. War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden
Format: Gebundene Ausgabe
In diesem Buch werden viele Themen der Mustererkennung wie z. B. Klassifikation durch die Nächster-Nachbar-Regel und neuronale Netze, Optimierung mit genetischen Algorithmen und Simulated Annealing, Clustering und Cross Validation angesprochen. Die mathematischen Grundlagen werden in einem Anhang erklärt. Die Abbildungen und die Darstellung von Algorithmen durch Pseudocode sind sehr gut. Bei meiner Promotion war mir dieses Buch sehr nützlich.
Kommentar 5 von 5 haben dies hilfreich gefunden. War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden
Format: Gebundene Ausgabe
Duda, Hart und Stork haben mit diesem Buch einen Klassiker der Musterkennung geschaffen. Sicherlich ist der Anspruch an den Leser sehr hoch, trotzdem können auch Studenten im Informatik/Mathematik-Hauptstudium der Materie folgen.

Die vielen Abbildungen, Beispiele und Aufgaben runden dieses Buch zu einem hervorragenden Gesamtwerk ab.
Kommentar 2 von 2 haben dies hilfreich gefunden. War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: HASH(0x9266581c) von 5 Sternen 40 Rezensionen
83 von 85 Kunden fanden die folgende Rezension hilfreich
HASH(0x926b627c) von 5 Sternen Disappointing 28. Dezember 2000
Von Ein Kunde - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
This book is a revised edition of Duda and Hart's classic text on Pattern Classification which was originally published in 1973. In fact, the 1973 edition of the book played a pivotal role in introducing me (and countless researchers of my generation) to the field of pattern classification. Needless to say, I was looking forward to the release of the revised edition. Unfortunately, I was extremely disappointed with the new edition. I had expected much more from the masters: Duda and Hart!
My reasons for disappointment with this book are as follows:
Given the 27 years that have elapsed since the publication of the first edition of the book, and the immense progress that has taken place in pattern recognition, machine learning, computational learning theory, grammar inference, statistical inference, algorithmic information theory, and related areas, the revisions and additions in the 2000 edition are essentially of a patchwork nature. In my opinion, they do not reflect the current understanding of the topic of pattern classification.
A disproportionate number of pages are devoted to topics like density estimation despite the fact that it has been well established in recent years, through the work of Vapnik and others, that when working with limited data, trying to solve the problem of pattern classification through density estimation (which turns out to be, in a well-defined sense of the term, a much harder problem than pattern classification) is rather futile. When modern techniques for learning pattern classifiers from limited data sets (e.g., support vector classifiers) are touched on in the book, the treatment is disappointingly superficial and in some cases, misleading.
There is virtually no discussion of problems of learning from large high dimensional data sets, incremental refinement of classifiers, learning from sequential data, distributed algorithms, etc. The treatment of non-numeric pattern recognition techniques (e.g., automata, languages, etc.) is extremely superficial. There is almost no discussion of essential aspects such as preprocessing and feature extraction techniques for dealing with variable length, semistructured, or unstructured patterns.
There is very little contact made with a large body of pattern classification algorithms, results, and approaches developed by the machine learning community, some exceptions.
There is little discussion of the extremely important topic of computational complexity and data requirements of learning algorithms.
On the positive side, the discussion of most topics that were originally covered in the 1973 edition has been further refined and in many cases, made more accessible through the addition of illustrative examples and diagrams. Topics such as Bayesian networks receive an intutive and accessible treatment. It was good to see a treatment of techniques for combining classifiers (although it is placed misleadingly in a chapter titled "Algorithm-Independent Machine Learning" which has an organization that is reminescent of a "kitchen sink"). The exercises at the end of each chapter seems useful.
Perhaps it is too difficult for any individual or a small group of individuals to write a textbook that reflects the state of the art in pattern recognition. Perhaps my expectations of Duda and Hart (based largely on the extraordinary job that did on the 1973 edition of their book) were too high to have a reasonable chance of being met by the 2000 edition. Perhaps I have come to expect more out of graduate level textbooks after having worked as a researcher and an educator in this field for over a decade at a major university.
In short, the book fell significantly short of my expectation.
87 von 92 Kunden fanden die folgende Rezension hilfreich
HASH(0x926b66cc) von 5 Sternen Pattern Classification by Duda et al.--2nd Edition 28. Dezember 2000
Von Lyndon S Hibbard - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
The 1973 edition of Pattern Classification by Richard Duda and Peter Hart is one of the most cited books in the fields of image processing, machine vision, and classification. It contains perhaps the clearest, most comprehensible descriptions of statistical inference ever written. Though intended for the image processing audience, it is general in its approach, and is broader in coverage than other contemporary books like the redoubtable Van Trees (1969). The section on Bayesian Learning anticipates the EM algorithm which appeared a few years later (Dempster, et al. 1977) and their description of Parzen windows for density estimation is more often cited than Parzen's own papers.
The appearance of the 2000 2nd edition led this writer to wonder if D&H could repeat with an offering as good as their first. In particular, would D&H have kept up with the considerable growth in methodology in the 1990s? Well, they have! With the addition of David Stork as third author, the second addition re-presents the basic theory, illustrated with some beautiful and complex figures, and knits it neatly with an exposition of neural networks, stochastic methods for posterior determination, nonmetric classification (tree search and string parsing), and clustering. Chapter 9 is a particularly interesting review of the recent machine learning research making the point that, absent knowledge of a problem's specific domain, no one classifier is better that any other. This chapter also reviews solutions to the problem of training on too-small samples including the Jackknife and bootstrap methods, and newer bagging and boosting algorithms popular in data mining applications. Each chapter is well-designed, with a summary, many exercises (including computer exercises), and references to the literature (typically 50-100) including many recent references.
This book is designed for an upper-level undergraduate/graduate audience. It doesn't assume a knowledge of statistics, but requires some familiarity with methods from calculus, real analysis, and linear algebra.
The first edition was a particularly important element in this writer's education; the second edition is certain to find a similar place in the working and intellectual lives of many new readers.
35 von 35 Kunden fanden die folgende Rezension hilfreich
HASH(0x926b66fc) von 5 Sternen excellent revision of a classical text on statistical pattern recognition 24. Januar 2008
Von Michael R. Chernick - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
The 1973 book by Duda and Hart was a classic. It surveyed the literature on pattern classification and scene analysis and provided the practitioner with wonderful insight and exposition of the subject. In the intervening 28 years the field has exploded and there has been an enormous increase in technical approaches and applications.
With this in mind the authors and their new coauthor David Stork go about the task of providing a revision. True to the goals of the original the authors undertake to describe pattern recognition under a variety of topics and with several available methods to cover each topic. Important new areas are covered and old but now deemed less significant are dropped. Advances in statistical computing and computing in general also dictate the topics. So although the authors are the same and the title is almost the same (note that scene analysis is dropped from the title) it is more like an entirely new book on the subject rthan a revision of the old. For a revision, I would expect to see mostly the same chapters with the same titles and only a few new chapters along with expansion of old chapters.

Although I view this as a new book, that is not necessarily bad. In fact it may be viewed as a strength of the book. It maintains the style and clarity of the original that we all loved but represents the state-of-the-art in pattern recognition at the beginning of the 21st Century.

The original had some very nice pictures. I liked some of them so much that I used them with permission in the section on classification error rate estimation in my bootstrap book. This edition goes much further with beautiful graphics including many nice three-dimensional color pictures like the one on the cover page.

The standard classical material is covered in the first five chapters with new material included (e.g. the EM algorithm and hidden markov models in Chapter 3). Chapter 6 covers multilayer neural networks (a totally new area). Nonmetric methods including decision trees and the CART methodology are covered in Chapter 8. Each chapter has a large number of relevant references and many homework exercises and computer exercises.

Chapter 9 is "Algorithm-Independent Machine Learning" and it includes the wonderful "No Free Lunch" theorem (Theorem 9.1), a discussion of the minimum desciption length principle, overfitting issues and Occam's razor, bias - variance tradeoffs,resampling method for estimation and classifier evaluation, and ideas about combining classifiers.

Chapter 10 is on unsurpervised learning and clustering. In addition to the traditional techniques covered in the first edition the authors include the many advances in mixture models.

I was particularly interested in that part of Chapter 9. There is good coverage of the topics and they provide a number of good references. However, I was a bit disappointed with the cursory treatment of bootstrap estimation of classification accuracy (section 9.6.3 on pages 485 - 486). I particularly disagree with the simplistic statement "In practice, the high computational complexity of bootstrap estimation of classifier accuracy is rarely worth possible improvements in that estimate (Section 9.5.1)". On the other hand, the book is one of the first to cover the newer and also promising resampling approaches called "Bagging" and "Boosting" that these authors seem to favor.

Davison and Hinkley's bootstrap text is mentioned for its practical applications and guidance for bootstrapping. The authors overlook Shao and Tu which offers more in the way of guidance. Also my book provides some guidance for error rate estimation but is overlooked.

My book also illustrate the limitations of the bootstrap. Phil Good's book provides guidance and is mentioned by the authors. But his book is very superficial and overgeneralized with respect to guiding practitioners. For these reasons I held back my enthusiasm and only gave this text four stars.
29 von 29 Kunden fanden die folgende Rezension hilfreich
HASH(0x926b69fc) von 5 Sternen Introducing the New Heavy Weight Champion 25. April 2001
Von Todd Ebert - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
Before this book was published, I considered "Pattern Recognition", by Theordoridis to be the best text for learning pattern recognition and classification. Although Theordoridis' book has some difficulties (not enough concrete exercises, ommission of structural methods, and not enough material on Bayesian Networks and HMMs), it seemed significantly better than previous texts. However, not only does Duda, Hart, and Stork's book succeed in those areas where the former fails, but it also has other strengths that the former book does not have: better illustrations, boxed formulas and algorithms, and highlighted defintions. Although somewhat superficial, these improvements mark the fact that pattern recognition is now considered a mainstream subject, and thus requires a mainstream text that keeps the integrity and rigor of the subject matter, while simultaneously making it more accessible to the average engineer. The new champ, however, does not come without it's own shortcomings. For example, I believe the last 3 chapters of Theodoridis' book should be read by anyone who wants a deeper understanding of clustering techniques for unsupervised learning. Moreover, this book fails to acknowledge the brilliant work done in computational learning by Vapnik and Chervonenkis, which reveals the authors' bias towards practice over theory. I believe it deserves more than passing mention in the historical notes section of unsupervised learning.
28 von 33 Kunden fanden die folgende Rezension hilfreich
HASH(0x926b6b34) von 5 Sternen A Very Bad Sequel 8. März 2007
Von Book Runner - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
I have now used this book 3 times for a class. While the 1st edition did a nice job of covering the material in its time, the additions to in the 2nd addition are a disaster. What the book has going for it is that it at least lists the necessary material for such a course in the table of contents. However, all the additional material is poorly explained at best. The problem sets are too few and the ones that are included are generally weak.

I have tried to use this book, but after constant student complaints and my own difficulty with the text, I have finally concluded that the problem lies with the text and not with the users.

I think an indicator of problems was the large number of errors in the first printing; large here is an understatement. Even in later additions, the 4th, the size of the errata is huge. I think this is indicative of the authors' attention to detail and seriousness in preparation. I have found similar errors and ambiguities in the associate Computer Manual.

The bottom line is that this book has seen its final appearance in our curriculum. I would use any other text, even an older one.

There is simply not enough room or time to point out all the problems with this text. Do yourself a favor if considering this text for a class. Don't bother.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.