• Alle Preisangaben inkl. MwSt.
Nur noch 1 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon.
Geschenkverpackung verfügbar.
Menge:1
Numerical Optimization (S... ist in Ihrem Einkaufwagen hinzugefügt worden
+ EUR 3,00 Versandkosten
Gebraucht: Sehr gut | Details
Zustand: Gebraucht: Sehr gut
Kommentar: 2nd ed. Stamped.
Ihren Artikel jetzt
eintauschen und
EUR 21,75 Gutschein erhalten.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Alle 2 Bilder anzeigen

Numerical Optimization (Springer Series in Operations Research and Financial Engineering) (Englisch) Gebundene Ausgabe – 22. August 2006


Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Gebundene Ausgabe
"Bitte wiederholen"
EUR 67,36
EUR 58,55 EUR 40,00
73 neu ab EUR 58,55 6 gebraucht ab EUR 40,00

Hinweise und Aktionen

  • Sparpaket: 3 Hörbücher für 33 EUR: Entdecken Sie unsere vielseitige Auswahl an reduzierten Hörbüchern und erhalten Sie 3 Hörbücher Ihrer Wahl für 33 EUR. Klicken Sie hier, um direkt zur Aktion zu gelangen.


Wird oft zusammen gekauft

Numerical Optimization (Springer Series in Operations Research and Financial Engineering) + Convex Optimization
Preis für beide: EUR 148,24

Die ausgewählten Artikel zusammen kaufen
Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.


Produktinformation

  • Gebundene Ausgabe: 664 Seiten
  • Verlag: Springer; Auflage: 2nd ed. 2006 (22. August 2006)
  • Sprache: Englisch
  • ISBN-10: 0387303030
  • ISBN-13: 978-0387303031
  • Größe und/oder Gewicht: 17,8 x 3,8 x 25,4 cm
  • Durchschnittliche Kundenbewertung: 3.0 von 5 Sternen  Alle Rezensionen anzeigen (1 Kundenrezension)
  • Amazon Bestseller-Rang: Nr. 23.822 in Fremdsprachige Bücher (Siehe Top 100 in Fremdsprachige Bücher)
  • Komplettes Inhaltsverzeichnis ansehen

Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Pressestimmen

MMOR Mathematical Methods of Operations Research, 2001: "The books looks very suitable to be used in an graduate-level course in optimization for students in mathematics, operations research, engineering, and others. Moreover, it seems to be very helpful to do some self-studies in optimization, to complete own knowledge and can be a source of new ideas.... I recommend this excellent book to everyone who is interested in optimization problems."

Synopsis

"Numerical Optimization" presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems. For this new edition, the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side. There is a selected solutions manual for instructors for the new edition.

Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?


In diesem Buch (Mehr dazu)
Mehr entdecken
Wortanzeiger
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis
Hier reinlesen und suchen:

Kundenrezensionen

3.0 von 5 Sternen
5 Sterne
0
4 Sterne
0
3 Sterne
1
2 Sterne
0
1 Sterne
0
Siehe die Kundenrezension
Sagen Sie Ihre Meinung zu diesem Artikel

Die hilfreichsten Kundenrezensionen

0 von 11 Kunden fanden die folgende Rezension hilfreich Von Minh Duc Hoang am 9. Juni 2009
Format: Gebundene Ausgabe Verifizierter Kauf
Es hat ca. ein Monat gedauert bis die Lieferung ankam, war aber auch aus der USA. Zustand aber einwandfrei
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 19 Rezensionen
26 von 33 Kunden fanden die folgende Rezension hilfreich
Too much explanation, relative to the required background; some omissions in motivation 23. September 2006
Von Alexander C. Zorach - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
While I acknowledge the many good points that the other reviewers pointed out, I found this book less than "optimal" in a number of respects.

The text is very wordy and yet still sometimes lacks critical explanations. In particular, I found that the motivation for the ideas in earlier chapters is insufficient for the skeptical and questioning reader--one needs to put more trust in the author than I was comfortable with. The lines of reasoning used to motivate the methods are vague: Nocedal spends too much time talking about optimization from a distance. I would have appreciated a book that was more concise and that had more airtight reasoning, exploring questions more thoroughly.

I also feel that this book is impoverished with respect to algorithms. One does not encounter enough algorithms early on, and the book does not encourage enough experimentation. It also suffers from the very common "sin" among Numerical mathematics texts--it talks extensively about the convergence of algorithms before cultivating a deep understanding of those algorithms. The effect is that the reader gets bogged down with technical details. While the motivated reader can go off on her own and experiment to fill in these gaps and piece together the puzzle, I think most people who have this level of initiative and intellectual curiosity would be better served by a book that is more concise.

Following on this same theme, the level of explanation is not consistent with the level of background required to read the book. Some things are explained in a level of detail appropriate to an introductory undergraduate text, but the book requires substantial background in multivariable calculus and linear algebra. Someone without prior background in numerical linear algebra will probably find the notation in the book unintuitive and cumbersome; the appendices are of little help. But anyone with sufficient background to fully understand the material in this book will probably find it has too much explanation and moves too slowly.

I haven't found a better book on the topic yet; solving such an optimization problem seems to beyond the scope of the algorithms covered in this text. But I do feel confident that this book is not the best, due to the flaws I've mentioned above!
6 von 7 Kunden fanden die folgende Rezension hilfreich
outstanding 15. Mai 2007
Von kelly londry - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe Verifizierter Kauf
This book is a well-written, outstanding reference for anyone interested in understanding, using, and/or implementing state-of-the-art techniques in nonlinear optimization. Ample attention is paid to both constrained and unconstrained problem types, with a healthy and refreshing emphasis on trust-region strategies, and modern SQP and Interior-Point algorithms. Sufficient detail is paid to most topics while overall perspectives are well-maintained. This book is the very best of its kind for its intended audience. I strongly recommend it.
5 von 6 Kunden fanden die folgende Rezension hilfreich
The best book for engineers that want to implement too 3. Oktober 2008
Von Amazon Customer - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe Verifizierter Kauf
The book is quite complete and goes directly to the point. if you ever need optimization in your design you will find it here. Simple and well presented. It has enough details about algorithmic performance and description that should be enough to implement. It is a book that you will never regret having it in your library. If you want something more theoretical use Nonlinear Programming by Bertsekas. If you want to use optimization in your programs use this.
Essential scientific computing text 11. Februar 2015
Von Ben S. - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
I'm a mechanical engineer by training, and computer vision scientist by experience. If you're into science/engineering and want to go the extra mile and do a little of your own scientific computation thing (you should, high demand niche. Temporarily sacrifice social life while you figure it out), I can't recommend this book enough.

It goes over pretty much all the topics, and does so in a very practical manner while avoiding having raw code in the text (hate when authors do that). I especially love the treatment of the trust region method; everything you need to know is there, and the motivations are clear. It is very applied, as it should be given the nature of the topic, but remains mathematically rigorous throughout.

If you want a taste of what's there, search some of Nocedal's fine publications.
2 von 3 Kunden fanden die folgende Rezension hilfreich
Optimal textbook 3. Juni 2009
Von Z. Rafii - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe Verifizierter Kauf
This textbook is kind of expensive (like many textbooks) but it is worthy. Everything about optimization is inside, well written and in details. And since everything is optimization, it can be really useful for all areas. I have just taken my final today in optimization with Nocedal as the instructor. He is as clear as his book, maybe more funny!
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.