Learning scikit-learn: Machine Learning in Python und über 1,5 Millionen weitere Bücher verfügbar für Amazon Kindle. Erfahren Sie mehr
EUR 29,95
  • Alle Preisangaben inkl. MwSt.
Auf Lager.
Verkauf und Versand durch Amazon.
Geschenkverpackung verfügbar.
Menge:1
Learning scikit-learn: Ma... ist in Ihrem Einkaufwagen hinzugefügt worden
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Alle 2 Bilder anzeigen

Learning scikit-learn: Machine Learning in Python (Englisch) Taschenbuch – 25. November 2013


Alle 2 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Taschenbuch
"Bitte wiederholen"
EUR 29,95
EUR 27,17 EUR 24,91
5 neu ab EUR 27,17 3 gebraucht ab EUR 24,91
EUR 29,95 Kostenlose Lieferung. Auf Lager. Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.

Hinweise und Aktionen

  • Reduzierte Bestseller und Neuheiten: Entdecken Sie unsere vielseitige Auswahl an reduzierten Hörbüchern und englischen Büchern. Klicken Sie hier, um direkt zur Aktion zu gelangen.


Wird oft zusammen gekauft

Learning scikit-learn: Machine Learning in Python + Building Machine Learning Systems with Python
Preis für beide: EUR 71,67

Die ausgewählten Artikel zusammen kaufen
Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.


Reduzierte Bestseller und Neuheiten
Entdecken Sie unsere vielseitige Auswahl an reduzierten Hörbüchern und englischen Büchern. Klicken Sie hier, um direkt zur Aktion zu gelangen.

Produktinformation

  • Taschenbuch: 118 Seiten
  • Verlag: Packt Publishing (25. November 2013)
  • Sprache: Englisch
  • ISBN-10: 1783281936
  • ISBN-13: 978-1783281930
  • Größe und/oder Gewicht: 19 x 0,7 x 23,5 cm
  • Durchschnittliche Kundenbewertung: 2.0 von 5 Sternen  Alle Rezensionen anzeigen (2 Kundenrezensionen)
  • Amazon Bestseller-Rang: Nr. 97.433 in Fremdsprachige Bücher (Siehe Top 100 in Fremdsprachige Bücher)

Mehr über die Autoren

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Über den Autor und weitere Mitwirkende

Raúl Garreta

Raúl Garreta is a Computer Engineer with much experience in the theory and application of Artificial Intelligence (AI), where he specialized in Machine Learning and Natural Language Processing (NLP).

He has an entrepreneur profile with much interest in the application of science, technology, and innovation to the Internet industry and startups. He has worked in many software companies, handling everything from video games to implantable medical devices.

In 2009, he co-founded Tryolabs with the objective to apply AI to the development of intelligent software products, where he performs as the CTO and Product Manager of the company. Besides the application of Machine Learning and NLP, Tryolabs' expertise lies in the Python programming language and has been catering to many clients in Silicon Valley. Raul has also worked in the development of the Python community in Uruguay, co-organizing local PyDay and PyCon conferences.

He is also an assistant professor at the Computer Science Institute of Universidad de la República in Uruguay since 2007, where he has been working on the courses of Machine Learning, NLP, as well as Automata Theory and Formal Languages. Besides this, he is finishing his Masters degree in Machine Learning and NLP. He is also very interested in the research and application of Robotics, Quantum Computing, and Cognitive Modeling. Not only is he a technology enthusiast and science fiction lover (geek) but also a big fan of arts, such as cinema, photography, and painting.



Guillermo Moncecchi

Guillermo Moncecchi is a Natural Language Processing researcher at the Universidad de la República of Uruguay. He received a PhD in Informatics from the Universidad de la República, Uruguay and a Ph.D in Language Sciences from the Université Paris Ouest, France. He has participated in several international projects on NLP. He has almost 15 years of teaching experience on Automata Theory, Natural Language Processing, and Machine Learning.

He also works as Head Developer at the Montevideo Council and has lead the development of several public services for the council, particularly in the Geographical Information Systems area. He is one of the Montevideo Open Data movement leaders, promoting the publication and exploitation of the city's data.


Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?


In diesem Buch (Mehr dazu)
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis | Rückseite
Hier reinlesen und suchen:

Kundenrezensionen

2.0 von 5 Sternen
5 Sterne
0
4 Sterne
0
3 Sterne
1
2 Sterne
0
1 Sterne
1
Beide Kundenrezensionen anzeigen
Sagen Sie Ihre Meinung zu diesem Artikel

Die hilfreichsten Kundenrezensionen

1 von 1 Kunden fanden die folgende Rezension hilfreich Von hape am 4. Juli 2014
Format: Taschenbuch Verifizierter Kauf
Dieses Buch ist eines der wenigen, die ich wieder postwendend an Amazon zurückgeschickt habe. Umfang und inhalt sind eher mit einem Web-Tutorial vergleichbar und die Präsentation erschien mir eher lieblos.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Format: Kindle Edition
I am a software developer and father of 2 small boys. Add these together and I don't generally have a lot of time for reading and because of this that I tend to love Packt's [Instant] series. These short introductions give me an idea if I want to invest more of my time on a subject.
I was already passingly acquainted with scikit-learn so this subject wasn't entirely new to me but, in this case, I can see that it might be a little harder for those coming completely blind to the subject.
One of the great things about the book is the inclusion of code in the form of IPython notebooks making it fairly easy to get started tweaking and testing. It is well written and fairly easy to follow.
Well, easy to follow if you already have a grasp on the maths and debugging of Python programmes. More in depth explanations would of course be great but this is an [Instant] book and you can't really expect and in depth coverage from it you just get your feet wet.
I would have given the book 4 stars but unfortunately not all the code can be interpreted as is and that might be frustrating to some.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 13 Rezensionen
46 von 49 Kunden fanden die folgende Rezension hilfreich
Badly written, adds little to docmentation 4. März 2014
Von Andreas Mueller - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This books is pretty badly written and contains many factual errors. I was reviewer for the book before I quit the project, as my comments where not addressed (I am one of the core developers of scikit-learn) and the quality of code, content and language was very low.

I think you get much better information if you have a look at the online tutorials on scikit-learn, of which there are many. There is definitely room for a good scikit-learn book for practical machine learning, but this is not it.
13 von 13 Kunden fanden die folgende Rezension hilfreich
Quickly understand how scikit-learn works if you have already know some python and machine learning 11. Februar 2014
Von Willy - Veröffentlicht auf Amazon.com
Format: Kindle Edition
Short Answer
I'll recommend the book to people who can debug python codes by themselves and have some basic machine learning knowledge.

This book gives a short and brief introduction for scikit-learn. I did get some ideas about how to use scikit-learn to do some basic machine learning things. I regard this book as a more detailed document. It might be better if it can provide more mathematics intuition.

Pros
Quickly understand how scikit-learn works if you have already known some python and machine learning
Awesome IPython Notebook

Cons:
Some codes cannot be compiled.
Some algorithms haven't been described clearly.
Some libraries such like Pandas hasn't been described clearly.
Lack of Math intuition.
13 von 15 Kunden fanden die folgende Rezension hilfreich
Explains little, erroneous code 4. Februar 2014
Von Anne Markis - Veröffentlicht auf Amazon.com
Format: Kindle Edition Verifizierter Kauf
This book was a disappointment to me. I'm going to say that 80% of the code examples didn't compile if typed directly from the text - usually due to something dumb like an unmentioned import but still a bummer to spend time trying to figure it out. As far as the content, I learned very little: it seemed like it was merely an elongated version of their documentation online, only with more details and less meaning.
2 von 2 Kunden fanden die folgende Rezension hilfreich
Great book if you're highly motivated to learn ML techniques! 11. August 2014
Von Amazon Customer - Veröffentlicht auf Amazon.com
Format: Kindle Edition Verifizierter Kauf
I'm giving this book 5 stars because I found it useful in getting my feet wet with machine learning (ML). If you want to see what kind of ML tools are in use now (or at least recently) using free software and you know how to code in Python and you know enough about debugging computer programs to find all the errors in the author's code then maybe this book is for you too.
Pros:
free software (if you can get it to run on your computer...not very easy)
book is very affordable
Cons:
software is devilishly hard to get working (I had to get a commercial version to make it work on Win7X64)
authors code is loaded with errors, you MUST find an errata list and keep it with you as you read (if you run the code)
even the errata list from the publisher is incomplete I found several additional errors and I ran every problem
authors explanation of ML and software is mushy, feels like he's giving you a quick demo in his office on a few interesting ML problems
Most of these follow-along-with-me books have these same problems, I've read many, so I was prepared for frustration but if you're not a coder or if you're new to installing software I'd suggest reading the scikit example pages that you can find on the interwebs.
I really, really want to use these methods to help pick winning stocks so I'm highly motivated to hammer through the problems and make it work; great starting point for me. Your mileage may vary.
2 von 2 Kunden fanden die folgende Rezension hilfreich
Short & (kinda) Sweet 17. Februar 2014
Von Marc-Anthony Taylor - Veröffentlicht auf Amazon.com
Format: Kindle Edition
I am a software developer and father of 2 small boys. Add these together and I don't generally have a lot of time for reading and because of this that I tend to love Packt's [Instant] series. These short introductions give me an idea if I want to invest more of my time on a subject.
I was already passingly acquainted with scikit-learn so this subject wasn't entirely new to me but, in this case, I can see that it might be a little harder for those coming completely blind to the subject.
One of the great things about the book is the inclusion of code in the form of IPython notebooks making it fairly easy to get started tweaking and testing. It is well written and fairly easy to follow.
Well, easy to follow if you already have a grasp on the maths and debugging of Python programmes. More in depth explanations would of course be great but this is an [Instant] book and you can't really expect and in depth coverage from it you just get your feet wet.
I would have given the book 4 stars but unfortunately not all the code can be interpreted as is and that might be frustrating to some.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.