EUR 68,10
  • Statt: EUR 71,64
  • Sie sparen: EUR 3,54 (5%)
  • Alle Preisangaben inkl. MwSt.
Nur noch 3 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Menge:1
An Invitation to 3-D Visi... ist in Ihrem Einkaufwagen hinzugefügt worden
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Alle 3 Bilder anzeigen

An Invitation to 3-D Vision: From Images to Geometric Models (Interdisciplinary Applied Mathematics) (Englisch) Gebundene Ausgabe – 12. Juli 2005

5 von 5 Sternen 1 Kundenrezension

Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Preis
Neu ab Gebraucht ab
Gebundene Ausgabe
"Bitte wiederholen"
EUR 68,10
EUR 59,00 EUR 67,41
44 neu ab EUR 59,00 8 gebraucht ab EUR 67,41

Wird oft zusammen gekauft

  • An Invitation to 3-D Vision: From Images to Geometric Models (Interdisciplinary Applied Mathematics)
  • +
  • Multiple View Geometry in Computer Vision
Gesamtpreis: EUR 141,05
Die ausgewählten Artikel zusammen kaufen

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre E-Mail-Adresse oder Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.



Produktinformation

Produktbeschreibungen

Pressestimmen

From the reviews:

"Computer vision is invading our daily lives … . Covering all the aspects would be too vast an area to cover in one book, so here, the authors concentrated on the specific goal of recovering the geometry of a 3D object … . The 22 pages of references form a good guide to the literature. The authors found an excellent balance between a thorough mathematical treatment and the applications themselves. … the text will be a pleasure to read for students … ." (Adhemar Bultheel, Bulletin of the Belgian Mathematical Society, Vol. 12 (2), 2005)

"This is primarily a textbook of core principles, taking the reader from the most basic concepts of machine vision … to detailed applications, such as autonomous vehicle navigation. … It is a clearly written book … . Everything that is required is introduced … . an entirely self-contained work. … The book is aimed at graduate or advanced undergraduate students in electrical engineering, computer science, applied mathematics, or indeed anyone interested in machine vision … . is highly recommended." (D.E. Holmgren, The Photogrammetric Record, 2004)

"This very interesting book is a great book teaching how to go from two-dimensional (2D)-images to three-dimensional (3D)-models of the geometry of a scene. … A good part of this book develops the foundations of an appropriate mathematical approach necessary for solving those difficult problems. … Exercises (drill exercises, advanced exercises and programming exercises) are provided at the end of each chapter." (Hans-Dietrich Hecker, Zentralblatt MATH, Vol. 1043 (18), 2004)

"This book gives senior undergraduate and beginning graduate students and researchers in computer vision, applied mathematics, computer graphics, and robotics a self-contained introduction to the geometry of 3D vision. That is the reconstruction of 3D models of objects from a collection of 2D images. … Exercises are provided at the end of each chapter. Software for examples and algorithms are available on the author’s website." (Daniel Leitner, Simulation News Europe, Vol. 16 (1), 2006)

Synopsis

This book gives senior undergraduate and beginning graduate students and researchers in computer vision, applied mathematics, computer graphics, and robotics, a self-contained introduction to the geometry of 3D vision; that is the reconstruction of 3D models of objects from a collection of 2D images. Following a brief introduction, Part I provides background materials for the rest of the book. The two fundamental transformations, namely rigid body motion and perspective projection are introduced and image formation and feature extraction discussed.Part II covers the classic theory of two view geometry based on the so-called epipolar constraint. Part III shows that a more proper tool for studying the geometry of multiple views is the so-called rank considtion on the multiple view matrix. Part IV develops practical reconstruction algorithms step by step as well as discusses possible extensions of the theory. Exercises are provided at the end of each chapter. Software for examples and algorithms are available on the author's website.

Alle Produktbeschreibungen

Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?


In diesem Buch

(Mehr dazu)
Einleitungssatz
The sense of vision plays an important role in the life of primates: it allows them to infer spatial properties of the environment that are necessary to perform crucial tasks for survival. Lesen Sie die erste Seite
Mehr entdecken
Wortanzeiger
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis | Rückseite
Hier reinlesen und suchen:

Kundenrezensionen

5.0 von 5 Sternen
5 Sterne
1
4 Sterne
0
3 Sterne
0
2 Sterne
0
1 Sterne
0
Siehe die Kundenrezension
Sagen Sie Ihre Meinung zu diesem Artikel

Top-Kundenrezensionen

Format: Gebundene Ausgabe Verifizierter Kauf
Ein Muss für die Einsteiger in Computer Vision. Algorithmen sehr klar erklärt und dargestellt. Auch ein tolle Buch für Bildverarbeitung.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: HASH(0xa66fc834) von 5 Sternen 7 Rezensionen
21 von 22 Kunden fanden die folgende Rezension hilfreich
HASH(0xa674a744) von 5 Sternen a must-have book for computer vision students & researchers 30. März 2004
Von Ein Kunde - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
The authors do an outstanding job of balancing theory and practice in this book. In particular, Ch. 11 (Step-by-Step Building of a 3-D Model from Images) is a gem. The new student of computer vision that finds Structure from Motion (SFM) daunting should read this chapter first to build motivation by means of seeing concrete examples.
What's most notable about this book is its thoroughness. The authors humbly get their hands dirty with crucial low-level matters like interest point detection and feature tracking. In Ch. 5 and 6 (calibrated and uncalibrated reconstruction) you'll get an excellent treatment of the necessary background in these areas, along with numerous new insights and `nuggets.' This is particularly true in their treatment of homographies. Ch. 2 has all the material on rigid body motion and the exponential map that students used to need to get from Murray, Li and Sastry, once again with substantial added value.
The exercises in all the chapters are very well thought out, and they -- together with the clearly written Algorithm Boxes -- greatly simplify the job of the instructor. (I am currently using this as the text for my graduate level class this quarter.) The appendices (especially the one on Linear Algebra) also help to make this a self-contained resource for SFM.
I haven't gotten into the material on multi-body motion and n>2 views, so I can't comment on those parts(...)In summary, this is a great book, well worth the money.
8 von 9 Kunden fanden die folgende Rezension hilfreich
HASH(0xa679bb1c) von 5 Sternen Good 3-D vision book with emphasis on applications 10. Dezember 2005
Von calvinnme - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
I really liked this book. However, I use it for vision issues as they relate to robotics rather than as an introductory text on 3D vision. If a general or introductory textbook on 3D computer vision is what you desire, then you might be better off with "Multiple View Geometry in Computer Vision" by Hartley or my personal favorite, "Introductory Techniques for 3-D Computer Vision" by Trucco and Verri. For individuals studying robotic vision, many parts of this book are useful not only for characterizing vision, but for putting together algorithms and equations that are useful for describing robotic motion in general. For example, chapter two of the book collects equations and algorithms that are very useful in describing forward kinematics. Chapters five through ten cover all of the considerations and algorithms needed to produce a 3D image from a collection of images taken from different viewpoints. Chapter eleven applies this knowledge with sequential instructions on building a 3D image from a group of images. Chapter twelve has a second application that shows how to perform autonomous control of a moving vehicle via video feedback. The appendices have some very good information on linear algebra as it relates to computer vision as well as details on the Kalman filter, which is also of great interest to those of us who are interested in computational robotics. Algorithms are blocked out and explained in logical steps throughout the book, and it also has very good exercises at the end of each chapter as well as short examples throughout each chapter, although the notation can sometimes be a little confusing. I would therefore recommend this book especially to those readers who are interested in merging their knowledge of robotics with their knowledge of basic computer vision into creating sophisticated applications. However, this book is by no means an introduction to computer vision. The table of contents is as follows:
Ch 1 - Introduction
Ch 2 - Representation of a 3D Moving Scene
Ch 3 - Image Formation
Ch 4 - Image Primitives and Correspondence
Ch 5 - Reconstruction from Two Calibrated Views
Ch 6 - Reconstruction from Two Uncalibrated Views
Ch 7 - Segmentation of Multiple Moving Objects from Two Views
Ch 8 - Multiple View Geometry of Points and Lines
Ch 9 - Extension to General Incidence Relations
Ch 10- Geometry and Reconstruction From Symmetry
Ch 11- Step by Step Building of a 3D Model from Images
Ch 12- Visual Feedback
7 von 9 Kunden fanden die folgende Rezension hilfreich
HASH(0xa67a663c) von 5 Sternen Unnecessarily technical 15. November 2009
Von Oleg Alexandrov - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
This book views the underlying mathematics as the purpose, and the subject of 3D vision as some application; that makes the book hard do read. I am saying that as a PhD in applied mathematics who knows very well the math in the book. The book can rant on and on with pagefuls of formulas and derivations before explaining in a technical language what that means for 3D vision, instead of stating what the problem is, making the case for what needs to be done, and then using the mathematics to get there.

This is a good reference book if you already know the subject and want to deepen your knowledge, rather than something you'd use as an entry point into the field of 3D vision.
HASH(0xa67a3540) von 5 Sternen Great resource for camera models & epipolar geometry 10. August 2013
Von S. Billings - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe Verifizierter Kauf
After going through a computer vision class with a very sub-par textbook, I still did not have a good grasp of epipolar geometry and camera calibration. This book gives a very nice treatment of these subjects.
0 von 1 Kunden fanden die folgende Rezension hilfreich
HASH(0xa67abc60) von 5 Sternen Thoughtfully written 31. Dezember 2013
Von Charlie - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe Verifizierter Kauf
We used this book at Duke University for our graduate course in 3D reconstruction. It is well written, although sometimes the notation is flawed.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.