An Ihren Kindle oder ein anderes Gerät senden

 
 
 

Kostenlos testen

Jetzt kostenlos reinlesen

An Ihren Kindle oder ein anderes Gerät senden

Jeder kann Kindle Bücher lesen  selbst ohne ein Kindle-Gerät  mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.
Foundations of Statistical Natural Language Processing
 
 

Foundations of Statistical Natural Language Processing [Kindle Edition]

Hinrich Schuetze , Christopher Manning
5.0 von 5 Sternen  Alle Rezensionen anzeigen (3 Kundenrezensionen)

Kindle-Preis: EUR 49,49 Inkl. MwSt. und kostenloser drahtloser Lieferung über Amazon Whispernet

  • Länge: 620 Seiten
  • Sprache: Englisch
  • Aufgrund der Dateigröße dauert der Download dieses Buchs möglicherweise länger.
  • Sie haben noch keinen Kindle? Hier kaufen Oder fangen Sie mit einer unserer gratis Kindle Lese-Apps sofort an zu lesen.

Weitere Ausgaben

Amazon-Preis Neu ab Gebraucht ab
Kindle Edition EUR 49,49  
Gebundene Ausgabe EUR 70,70  

Kunden, die diesen Artikel gekauft haben, kauften auch


Produktbeschreibungen

Pressestimmen

"Statistical natural-language processing is, in my estimation, one ofthe most fast-moving and exciting areas of computer science thesedays. Anyone who wants to learn this field would be well advised toget this book. For that matter, the same goes for anyone who isalready in the field. I know that it is going to be one of the mostwell-thumbed books on my bookshelf." Eugene Charniak , Department of Computer Science, Brown University

Kurzbeschreibung

Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Produktinformation

  • Format: Kindle Edition
  • Dateigröße: 10722 KB
  • Seitenzahl der Print-Ausgabe: 720 Seiten
  • Verlag: The MIT Press; Auflage: 1 (28. Mai 1999)
  • Verkauf durch: Amazon Media EU S.à r.l.
  • Sprache: Englisch
  • ASIN: B007L7LUKO
  • Text-to-Speech (Vorlesemodus): Aktiviert
  • X-Ray:
  • Durchschnittliche Kundenbewertung: 5.0 von 5 Sternen  Alle Rezensionen anzeigen (3 Kundenrezensionen)
  • Amazon Bestseller-Rang: #244.871 Bezahlt in Kindle-Shop (Siehe Top 100 Bezahlt in Kindle-Shop)

  •  Ist der Verkauf dieses Produkts für Sie nicht akzeptabel?

Mehr über die Autoren

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Kundenrezensionen

4 Sterne
0
3 Sterne
0
2 Sterne
0
1 Sterne
0
5.0 von 5 Sternen
5.0 von 5 Sternen
Die hilfreichsten Kundenrezensionen
7 von 7 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen An absolute MUST for anyone interested in NLP. 26. Mai 1999
Format:Gebundene Ausgabe
This is the best book I've ever read on computational linguistics. It should be ideal for both linguists who want to learn about statistical language processing and those building language applications who want to learn about linguistics. This book isn't even published and it's now my most highly used reference book, joining gems such as Cormen, Leiserson and Rivest's algorithm book, Quirk et al.'s English Grammar, and Andrew Gelman's Bayesian statistics book (three excellent companions to this book, by the way).
The book is written more like a computer science or math book in that it starts absolutely from scratch, but moves quickly and assumes a sophisticated reader. The first one hundred or so pages provide background in probability, information theory and linguistics.
This book covers (almost) every current trend in NLP from a statistical perspective: syntactic tagging, sense disambiguation, parsing, information retrieval, lexical subcategorization, Hidden Markov Models, and probabilistic context-free grammars. It also covers machine translation and information retrieval in later chapters.
It covers all the statistical techniques used in NLP from Bayes' law through to maximum entropy modeling, clustering: nearest neighbors and decision trees, and much more.
What you won't find is information on applications to higher-level discourse and dialogue phenomena like pronoun resolution or speech act classification.
War diese Rezension für Sie hilfreich?
5.0 von 5 Sternen Ein Muss für Computerlinguisten! 13. Januar 2013
Format:Gebundene Ausgabe
Jeder CLer sollte sich dieses Buch vornehmen! Es ist sehr gut verständlich, auch ohne Statistikkenntnisse, und es enthält alles, was man wissen muss, wenn man in die statistische Computerlinguistik einsteigen möchte. Die Erklärungen enthalten immer verständliche Beispiele, Diagramme oder Zeichnungen. Man kommt um dieses Buch einfach nicht herum und sollte es auch nicht. Eine absolute Empfehlung!
War diese Rezension für Sie hilfreich?
2 von 4 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Makes a great textbook... 9. April 2000
Von Ein Kunde
Format:Gebundene Ausgabe
My professor chose this book for a undergraduate course in Statistical Natural Language Processing and as a student I found it to be a great learning tool. It gave sufficient background in statistics and language so people with little background in this areas can get up to speed quickly.
Lots of interesting assignments are proposed at the end of each chapter, and while some of the questions are rather vague (particularly with respect to the data they are refering to at times) they can be good starting points for further discussion or projects.
As a student, I give this book an A+.
War diese Rezension für Sie hilfreich?
Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)
Amazon.com: 4.7 von 5 Sternen  19 Rezensionen
138 von 139 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen An absolute MUST for anyone interested in NLP. 26. Mai 1999
Von Bob Carpenter (carp@research.bell-labs.com) - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe
This is the best book I've ever read on computational linguistics. It should be ideal for both linguists who want to learn about statistical language processing and those building language applications who want to learn about linguistics. This book isn't even published and it's now my most highly used reference book, joining gems such as Cormen, Leiserson and Rivest's algorithm book, Quirk et al.'s English Grammar, and Andrew Gelman's Bayesian statistics book (three excellent companions to this book, by the way).
The book is written more like a computer science or math book in that it starts absolutely from scratch, but moves quickly and assumes a sophisticated reader. The first one hundred or so pages provide background in probability, information theory and linguistics.
This book covers (almost) every current trend in NLP from a statistical perspective: syntactic tagging, sense disambiguation, parsing, information retrieval, lexical subcategorization, Hidden Markov Models, and probabilistic context-free grammars. It also covers machine translation and information retrieval in later chapters.
It covers all the statistical techniques used in NLP from Bayes' law through to maximum entropy modeling, clustering: nearest neighbors and decision trees, and much more.
What you won't find is information on applications to higher-level discourse and dialogue phenomena like pronoun resolution or speech act classification.
137 von 139 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Fantastic return on investment 13. September 2000
Von Peter Norvig - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe
There are lots of books (and even more junk email) with titles like "Get Rich Quick". On the surface, this book is the exact opposite: a scholarly, scientific text aimed at comprehensive, accurate description, not at commercial hype. But if someone told me I had to make a million bucks in one year, and I could only refer to one book to do it, I'd grab a copy of this book and start a web text-processing company. Your return on investment might not be $1M, but this book delivers everything it promises. For all the major practical applications of statistical text processing, this book accurately and clearly surveys the major techniques. It often has pretty good advice about which techniques to prefer, but sometimes reads more like a catalog of listings (this reflects not on the authors' failing, but rather on the field's immaturity).
It's worth comparing this book to the other recent NLP text: Jurafsky and Martin's. (Disclaimer: I worked with them on the preparation of their text.) Jurafsky and Martin cover much more ground, including many aspects that are ignored by Manning and Schutze. So if you want a general overview of natural language, if you want to know about the syntax of English, or the intricacies of dialog, then Jurafsky and Martin is for you. But if your needs are more focused on the algorithms for lower-level text processing with statistical techniques, then Manning and Schutze is far more comprehensive. If you're a serious student or professional in NLP, you just have to have both.
57 von 59 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Self-contained and instructive, read the TOC first! 26. Mai 2002
Von Peter Alfheim - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe|Verifizierter Kauf
Compared to the slightly overrated Jurafsky and Martin's classic, this book aims less targets but hits them all more precisely, completely and satisfactory for the reader. That is, just to give you an idea on what to expect, instead of attacking 200 problems on 2 pages each, this book attacks only 40 problems on 10 pages each.

So, read the TOC before you buy the book: if you find your topics there, you're done, you are saved, buy it and be happy. In contrast, you can buy Jurafsky's book without caring to read the TOC: your problem is likely to be mentioned there but it's quite unlikely to be detailed enough to satisfy you.

Some introductory chapters take too much space and some advanced topics are missing. But the book is actually named "Foundations of..." so it seems to deliver precisely what it promisses, which is a precious and rare accomplishment by itself. I recommend this book.
9 von 10 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Which NLP techniques to apply? 12. Mai 2001
Von Kah Tong, Seow - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe
If you need a good introductory textbook on NLP, look no further. While doing a project on information extraction of protein-protein interactions from biological free text, I was not sure which of the NLP grammar methods is relevant to the project. A web survey can give you a long listing of various grammar methods. To gain a sound background on how these grammar methods are related and evolved from one another, study chapters 11 and 12. The techniques used in some successful commercial products are discussed especially in chapter 12.2. With this book, it is unlikely that you will get lost when reading " Survey of the State of the Art in Human Language Technology" ([...]
12 von 14 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Complete & Self-Contained 23. November 2000
Von Chris McKinstry - Veröffentlicht auf Amazon.com
Format:Gebundene Ausgabe
In 1957, J. R. Firth coined the phrase "You shall know a word by the company it keeps", unfortunately it's taken almost four decades for us to create the technology and more importantly the corpa, to prove this to be the case.
This is the post-rationalist, post-Chomskian age, and this book is a complete and self-contained introduction to the emperical methods of statistical natural lanagage processing that define it.
If you want in to this field, this is the door.
Waren diese Rezensionen hilfreich?   Wir wollen von Ihnen hören.
Kundenrezensionen suchen
Nur in den Rezensionen zu diesem Produkt suchen

Kunden diskutieren

Das Forum zu diesem Produkt
Diskussion Antworten Jüngster Beitrag
Noch keine Diskussionen

Fragen stellen, Meinungen austauschen, Einblicke gewinnen
Neue Diskussion starten
Thema:
Erster Beitrag:
Eingabe des Log-ins
 

Kundendiskussionen durchsuchen
Alle Amazon-Diskussionen durchsuchen
   


Ähnliche Artikel finden