oder
Loggen Sie sich ein, um 1-Click® einzuschalten.
oder
Mit kostenloser Probeteilnahme bei Amazon Prime. Melden Sie sich während des Bestellvorgangs an.
Jetzt eintauschen
und EUR 0,10 Gutschein erhalten
Eintausch
Alle Angebote
Möchten Sie verkaufen? Hier verkaufen
Der Artikel ist in folgender Variante leider nicht verfügbar
Keine Abbildung vorhanden für
Farbe:
Keine Abbildung vorhanden

 
Den Verlag informieren!
Ich möchte dieses Buch auf dem Kindle lesen.

Sie haben keinen Kindle? Hier kaufen oder eine gratis Kindle Lese-App herunterladen.

Differential- und Integralrechnung II: Differentialrechnung in mehreren Veränderlichen Differentialgleichungen (Heidelberger Taschenbücher) [Taschenbuch]

Hans Grauert Wolfgang Fischer

Preis: EUR 49,95 kostenlose Lieferung. Siehe Details.
  Alle Preisangaben inkl. MwSt.
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Auf Lager.
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Lieferung bis Donnerstag, 31. Juli: Wählen Sie an der Kasse Morning-Express. Siehe Details.

Kurzbeschreibung

1. Januar 1978 3540086978 978-3540086970 3., verb. Aufl.
differenzierbar, wenn es eine in Xo stetige Abbildung x -+ ,1. £ von U in den dual en Raum Hom (JRn, JR) gibt, so daB /(x)=f(xo)+,1x(x-x ) o gilt. Diese Definition ilbertragt sich auf den Fall, wo Xo Punkt eines separierten topologischen Vektorraumes E ist und die Werte von f in einem ebensolchen Vektorraum F liegen. Man hat dazu den Raum Hom (E, F) der stetigen linearen Ab­ bildungen von E in F mit einer Pseudotopologie zu versehen 1: Man betrachtet z. B. genau die Filter £ auf Hom (E, F) als gegen 0 kon­ vergent, die folgende Eigenschaft haben: Fur jeden Filter ~ auf Emit m· ~ -+ 0 gilt £ (~) -+ 0 in F. Dabei ist m der Filter der Nullumge­ bungen in JR, m· ~ wird von den N A mit N E m und A E ~ erzeugt, £ (~) von den L (A) = u A. (A) mit L E £ und A E~. Man kann nun die Differenzierbarkeit ~~~au wie oben definieren, nur ist unter x -+ ,1x jetzt eine in Xo stetige Abbildung von U in Hom (E, F) zu verstehen. Man zeigt: Da die naturliche Abbildung Hom(E,F)XE-+F stetig ist, ist ,1xo eindeutig bestimmt und kann als Ableitung von f im Punkt Xo bezeichnet werden. Auch jetzt folgt aus der Differenzierbarkeit die Stetigkeit; es gilt die Kettenregel.

Hinweise und Aktionen

  • Amazon Trade-In: Tauschen Sie Ihre gebrauchten Bücher gegen einen Amazon.de Gutschein ein - wir übernehmen die Versandkosten. Mehr erfahren


Kunden, die diesen Artikel gekauft haben, kauften auch


Produktinformation


Eine digitale Version dieses Buchs im Kindle-Shop verkaufen

Wenn Sie ein Verleger oder Autor sind und die digitalen Rechte an einem Buch haben, können Sie die digitale Version des Buchs in unserem Kindle-Shop verkaufen. Weitere Informationen

Kundenrezensionen

Noch keine Kundenrezensionen vorhanden.
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Sterne

Kunden diskutieren

Das Forum zu diesem Produkt
Diskussion Antworten Jüngster Beitrag
Noch keine Diskussionen

Fragen stellen, Meinungen austauschen, Einblicke gewinnen
Neue Diskussion starten
Thema:
Erster Beitrag:
Eingabe des Log-ins
 

Kundendiskussionen durchsuchen
Alle Amazon-Diskussionen durchsuchen
   


Ähnliche Artikel finden


Ihr Kommentar