fashionwintersale15 Öle & Betriebsstoffe für Ihr Auto mrp_family bestsellers-of-the-year-2015 Prime Photos Geschenkefinder Learn More pantry bosch Hier klicken Shop Kindle Shop Kindle

An Ihren Kindle oder ein anderes Gerät senden


Kostenlos testen

Jetzt kostenlos reinlesen

An Ihren Kindle oder ein anderes Gerät senden

Der Artikel ist in folgender Variante leider nicht verfügbar
Keine Abbildung vorhanden für
Keine Abbildung vorhanden

Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management [Kindle Edition]

Gordon S. Linoff , Michael J. A. Berry

Kindle-Preis: EUR 33,32 Inkl. MwSt. und kostenloser drahtloser Lieferung über Amazon Whispernet

Kostenlose Kindle-Leseanwendung Jeder kann Kindle Bücher lesen  selbst ohne ein Kindle-Gerät  mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.

Geben Sie Ihre E-Mail-Adresse oder Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Weitere Ausgaben

Preis Neu ab Gebraucht ab
Kindle Edition EUR 33,32  
Taschenbuch EUR 47,00  

Kunden, die diesen Artikel gekauft haben, kauften auch

Seite von Zum Anfang
Diese Einkaufsfunktion wird weiterhin Artikel laden. Um aus diesem Karussell zu navigieren, benutzen Sie bitte Ihre Überschrift-Tastenkombination, um zur nächsten oder vorherigen Überschrift zu navigieren.



The leading introductory book on data mining, fully updated and revised!

When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new edition—more than 50% new and revised— is a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company. 

  • Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problems
  • Covers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediately
  • Touches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and more
  • Provides best practices for performing data mining using simple tools such as Excel

Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.


The newest edition of the leading introductory book on data mining, fully updated and revised
Who will remain a loyal customer and who won't? Which messages are most effective with which segments? How can customer value be maximized? This book supplies powerful tools for extracting the answers to these and other crucial business questions from the corporate databases where they lie buried. In the years since the first edition of this book, data mining has grown to become an indispensable tool of modern business. In this latest edition, Linoff and Berry have made extensive updates and revisions to every chapter and added several new ones. The book retains the focus of earlier editions-showing marketing analysts, business managers, and data mining specialists how to harness data mining methods and techniques to solve important business problems. While never sacrificing accuracy for the sake of simplicity, Linoff and Berry present even complex topics in clear, concise English with minimal use of technical jargon or mathematical formulas. Technical topics are illustrated with case studies and practical real-world examples drawn from the authors' experiences, and every chapter contains valuable tips for practitioners. Among the techniques newly covered, or covered in greater depth, are linear and logistic regression models, incremental response (uplift) modeling, naïve Bayesian models, table lookup models, similarity models, radial basis function networks, expectation maximization (EM) clustering, and swarm intelligence. New chapters are devoted to data preparation, derived variables, principal components and other variable reduction techniques, and text mining.
After establishing the business context with an overview of data mining applications, and introducing aspects of data mining methodology common to all data mining projects, the book covers each important data mining technique in detail.
This third edition of Data Mining Techniques covers such topics as:
* How to create stable, long-lasting predictive models
* Data preparation and variable selection
* Modeling specific targets with directed techniques such as regression, decision trees, neural networks, and memory based reasoning
* Finding patterns with undirected techniques such as clustering, association rules, and link analysis
* Modeling business time-to-event problems such as time to next purchase and expected remaining lifetime
* Mining unstructured text
The companion website provides data that can be used to test out the various data mining techniques in the book.


  • Format: Kindle Edition
  • Dateigröße: 14091 KB
  • Seitenzahl der Print-Ausgabe: 891 Seiten
  • ISBN-Quelle für Seitenzahl: 0470650931
  • Verlag: Wiley; Auflage: 3 (23. März 2011)
  • Verkauf durch: Amazon Media EU S.à r.l.
  • Sprache: Englisch
  • ASIN: B004UB2KE4
  • Text-to-Speech (Vorlesemodus): Aktiviert
  • X-Ray:
  • Word Wise: Nicht aktiviert
  • Verbesserter Schriftsatz: Nicht aktiviert
  • Amazon Bestseller-Rang: #383.140 Bezahlt in Kindle-Shop (Siehe Top 100 Bezahlt in Kindle-Shop)

  •  Ist der Verkauf dieses Produkts für Sie nicht akzeptabel?

Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr


Es gibt noch keine Kundenrezensionen auf
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Sterne
Die hilfreichsten Kundenrezensionen auf (beta) 4.1 von 5 Sternen  24 Rezensionen
7 von 7 Kunden fanden die folgende Rezension hilfreich
3.0 von 5 Sternen Needs major restructuring 26. März 2014
Von cool_einstein - Veröffentlicht auf
This book has useful nuggets but one needs to be patient to weed through ill-structured content.

Problem1: Examples and content repeats quite a bit across chapters, but unfortunately never discusses things properly at one place. In every edition authors have added chapters but seemed to have forgotten what they have already discussed in earlier chapters.

Problem2: Many suggestions, scenarios have been incompletely discussed. Without enough information one has to assume quite a bit about the scenario, problem, solution and the value of it. It is okay if it had happened once in a while, but this sprinkling of anecdotes without fully discussing is rampant in this book.

Problem3: It is quite verbose.

Problem4: Keeps on changing the depth of the discussion. The discussion is overall at high-level, however at times authors would go really deep to discuss details around some random topic eg calculation of silhouette scores. The primary focus seemed to be business people and not statistics students. Going deep "selectively" is also a big problem in this book.

This book has the potential to become a really good book, but it needs major restructuring.
5 von 5 Kunden fanden die folgende Rezension hilfreich
4.0 von 5 Sternen In a field evolving as dynamically as data science, ... 23. Februar 2015
Von Zain Khandwala - Veröffentlicht auf
Format:Taschenbuch|Verifizierter Kauf
In a field evolving as dynamically as data science, 2011 seems a long time ago, and I've since bought a number of the newer titles out there. Still, however, I often find myself reverting to Linoff and Barry's text for a lucid explanation of, or interesting take on a particular data mining subject area.

The book is thorough (at 800+ pages this should be the expectation) and technical, but isn't really a how-to manual in that it stops short of containing actual code or instructions. That's not an issue, however, as such instructional information is available elsewhere if needed.

My only complaint about the work is that it is a little redundant and otherwise verbose at times. I hope a fourth edition is forthcoming, and that it is a little more tightly edited.

Z. Khandwala
Institute for Advanced Analytics
Bellarmine University - Louisville, KY
2 von 2 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Good Book - Highly Recommended. 2. Juli 2014
Von Geoffrey M. Lucas - Veröffentlicht auf
Format:Taschenbuch|Verifizierter Kauf
I got this book for a class on Data-Mining and I found it to be a very good book. It has good visuals to help the reader understand the concepts in the book and maintains a good sense of humor throughout so reading it doesn't seem as dense as some of my typical statistics books. My only criticism of the book would be that it never discusses common software platforms for performing these tasks. While I understand that he probably didn't want to favor a particular platform over another, it seems that introducing the major ones could be helpful for people that may be very used to using just one.
2 von 2 Kunden fanden die folgende Rezension hilfreich
4.0 von 5 Sternen Solid introduction to data mining 10. Juni 2013
Von M. Collins - Veröffentlicht auf
Format:Taschenbuch|Verifizierter Kauf
I haven't made it through the entire book, but this serves as a solid reference for different topics in data mining. I used it in a graduate level course I took this spring and it was easy to read and understand.
1 von 1 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen I found a lot of useful information from examples in different industries 6. August 2015
Von J. Su - Veröffentlicht auf
Format:Taschenbuch|Verifizierter Kauf
I have read a couple of books about data science. Reading this one is most enjoyable. I cannot put it down. I found a lot of useful information from examples in different industries. Highly recommend. I do have years of hands on experience on data mining.
Waren diese Rezensionen hilfreich?   Wir wollen von Ihnen hören.

Kunden diskutieren

Das Forum zu diesem Produkt
Diskussion Antworten Jüngster Beitrag
Noch keine Diskussionen

Fragen stellen, Meinungen austauschen, Einblicke gewinnen
Neue Diskussion starten
Erster Beitrag:
Eingabe des Log-ins

Kundendiskussionen durchsuchen
Alle Amazon-Diskussionen durchsuchen

Ähnliche Artikel finden