Data Mining: Concepts, Models, Methods, and Algorithms und über 1,5 Millionen weitere Bücher verfügbar für Amazon Kindle. Erfahren Sie mehr
Gebraucht kaufen
EUR 21,61
+ EUR 3,00 Versandkosten
Gebraucht: Gut | Details
Verkauft von Deal DE
Zustand: Gebraucht: Gut
Kommentar: Dieses Buch ist in gutem, sauberen Zustand. Seiten und Einband sind intakt.
Ihren Artikel jetzt
eintauschen und
EUR 0,10 Gutschein erhalten.
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Anhören Wird wiedergegeben... Angehalten   Sie hören eine Probe der Audible-Audioausgabe.
Weitere Informationen
Dieses Bild anzeigen

Data Mining: Concepts, Models, Methods, and Algorithms (Englisch) Taschenbuch – 11. Oktober 2002

1 Kundenrezension

Alle 3 Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Amazon-Preis Neu ab Gebraucht ab
Kindle Edition
"Bitte wiederholen"
Taschenbuch
"Bitte wiederholen"
EUR 106,62 EUR 21,61
3 neu ab EUR 106,62 10 gebraucht ab EUR 21,61

Dieses Buch gibt es in einer neuen Auflage:

Data Mining: Concepts, Models, Methods, and Algorithms
EUR 92,72
(1)
Lieferbar ab dem 3. August 2015.

Hinweise und Aktionen

  • Große Hörbuch-Sommeraktion: Entdecken Sie unsere bunte Auswahl an reduzierten Hörbüchern für den Sommer. Hier klicken.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.



Produktinformation

  • Taschenbuch: 358 Seiten
  • Verlag: John Wiley & Sons; Auflage: 1. Auflage (11. Oktober 2002)
  • Sprache: Englisch
  • ISBN-10: 0471228524
  • ISBN-13: 978-0471228523
  • Größe und/oder Gewicht: 17,7 x 1,6 x 25,5 cm
  • Durchschnittliche Kundenbewertung: 5.0 von 5 Sternen  Alle Rezensionen anzeigen (1 Kundenrezension)
  • Amazon Bestseller-Rang: Nr. 811.748 in Fremdsprachige Bücher (Siehe Top 100 in Fremdsprachige Bücher)
  • Komplettes Inhaltsverzeichnis ansehen

Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Produktbeschreibungen

Pressestimmen

"...a very readable and up-to-date introduction to data mining..." (Quality & Reliability Engineering International, Vol. 21 (4) June 2005) "...suitable for a graduate level course in data mining...I enjoyed reading this book and recommend it highly." (Journal of Statistical Computation & Simulation, April 2004) "...clear and well understandable...recommended as basic guidance...practitioners will profit from the author's long experience..." (Zentralblatt Math, Vol. 1027, 2004) "...reviews state-of-the-art techniques for analyzing enormous quantities of raw data..." (Quarterly of Applied Mathematics, Vol. LXI, No. 3, September 2003) "...a valuable book... I truly enjoyed reading the book and I am glad to recommend it to anyone working in this fascinating field." (IIE Transactions) "...detailed, well illustrated, and easy to understand...comprehensive...a good book..." (Mathematical Reviews 2003h) "...this is probably the first data-mining book that I would select from my bookshelf as reading material for a statistician..." (Technometrics, Vol. 45, No. 3, August 2003)

Synopsis

This book offers a comprehensive introduction to the exploding field of data mining. We are surrounded by data, numerical and otherwise, which must be analyzed and processed to convert it into information that informs, instructs, answers, or otherwise aids understanding and decision-making. Due to the ever-increasing complexity and size of today's data sets, a new term, data mining, was created to describe the indirect, automatic data analysis techniques that utilize more complex and sophisticated tools than those which analysts used in the past to do mere data analysis. "Data Mining: Concepts, Models, Methods, and Algorithms" discusses data mining principles and then describes representative state-of-the-art methods and algorithms originating from different disciplines such as statistics, machine learning, neural networks, fuzzy logic, and evolutionary computation. Detailed algorithms are provided with necessary explanations and illustrative examples. This text offers guidance: how and when to use a particular software tool (with their companion data sets) from among the hundreds offered when faced with a data set to mine.

This allows analysts to create and perform their own data mining experiments using their knowledge of the methodologies and techniques provided. This book emphasizes the selection of appropriate methodologies and data analysis software, as well as parameter tuning. These critically important, qualitative decisions can only be made with the deeper understanding of parameter meaning and its role in the technique that is offered here. Data mining is an exploding field and this book offers much-needed guidance to selecting among the numerous analysis programs that are available.


In diesem Buch

(Mehr dazu)
Nach einer anderen Ausgabe dieses Buches suchen.
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis | Rückseite
Hier reinlesen und suchen:

Kundenrezensionen

5.0 von 5 Sternen
5 Sterne
1
4 Sterne
0
3 Sterne
0
2 Sterne
0
1 Sterne
0
Siehe die Kundenrezension
Sagen Sie Ihre Meinung zu diesem Artikel

Die hilfreichsten Kundenrezensionen

Format: Gebundene Ausgabe Verifizierter Kauf
This book helps me a lot in finding an appropriate data mining strategy for my problem with big database. It describes methods clearly and examples makes them even better understandable. The book also addresses many questions all data mining projects encounter sooner all later.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback. Wenn diese Rezension unangemessen ist, informieren Sie uns bitte darüber.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: 3 Rezensionen
18 von 18 Kunden fanden die folgende Rezension hilfreich
Survey, not how-to 7. April 2004
Von wiredweird - Veröffentlicht auf Amazon.com
Format: Taschenbuch Verifizierter Kauf
The subtitle advertises "concepts, models, methods, and algorithms". Concepts and models, yes; methods, a few; algorithms, nearly none that you could actually code.
This book's strength is its breadth. It offers brief tastes of many topics. It discusses early data preparation, including reduction of dimension and handling of outliers and missing values. It emphasizes that different kinds of questions must be addressed in different ways. The rest of the book then covers decision rules of different sorts, clustering, neural networks, genetic algorithms, fuzzy logic, and data visualization. Each chapter includes references and comments on what to expect from each reference - a nice touch. The end of the book names a wide variety of web sites, products, and companies dedicated to data mining.
The big problem, however, is that the book is shallow. With a few exceptions, it just names techniques instead of giving descriptions that a programmer can use. For example, the discussion of missing data barely mentions the idea that imputed (made-up) values must be tailored to the specific analysis technique, so as to minimize their effect on results. There are exceptions, of course. Neural nets get a relatively detailed treatment. The author gives illustrative examples of genetic algorithms, but those were thin and tangential to data mining. The section on data visualization could have been much more lively. There is a huge body of visual technique, some bordering on artistry, that can present high-dimensional data to the human pattern-detection faculty, and samples are readily available. This book's examples were small and drab, though. Also, it completely ignored the research in auditory and tactile data representation, and omitted discussion of graphic design principles required for effective presentation.
What really bothered me were examples of sheer carelessness. A number of figures, including 4.8 and 9.9, contain errors severe enough to interfere with the point being made. Important relationships are simply illegible. Books like this aren't cheap - I would have hoped that the author would show a little more respect for the people paying the money.
This book may have value as a survey resource, but isn't for the reader who wants to implement the algorithms. Its bibliography is informative, but not a major asset. Indices of current products and web sites nearly guarantee early obsolescence. Look this over thoroughly before you commit your time and money to it.
3 von 3 Kunden fanden die folgende Rezension hilfreich
Pattern recognition or machine learning, not data mining 23. August 2004
Von Y. Keselman - Veröffentlicht auf Amazon.com
Format: Taschenbuch
This book can be used as an introduction to pattern recognition or machine learning rather than into data mining. Data mining does appear here and there, but mostly it is the classical pattern recognition and machine learning material (data reduction, clustering, neural networks) with very few illustrations from data mining. An introduction into genetic algorithms and fuzzy sets is also in the book, just in case, I suppose. If you'd like more specific data mining knowledge, look elsewhere.
1 von 2 Kunden fanden die folgende Rezension hilfreich
Good introduction to Neural Networks 12. Mai 2007
Von Anhnhat Tran - Veröffentlicht auf Amazon.com
Format: Taschenbuch
I am a graduate student doing thesis related to Neural Networks. I never took any class about Neural Networks before. After reading the chapter "Artificial Neural Networks", I found out that it is very readable for students who are new to Neural Networks. It shows clearly how to calculate/adjust weights with many examples, without overwhelming you with too much Math. I highly recommend this book if you are new to Neural Networks subject.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.