Facebook Twitter Pinterest
EUR 52,95
  • Statt: EUR 53,95
  • Sie sparen: EUR 1,00 (2%)
  • Alle Preisangaben inkl. MwSt.
Nur noch 1 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Classical Descriptive Set... ist in Ihrem Einkaufwagen hinzugefügt worden
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Dieses Bild anzeigen

Classical Descriptive Set Theory (Graduate Texts in Mathematics) (Englisch) Gebundene Ausgabe – 26. Januar 1995

4.5 von 5 Sternen 2 Kundenrezensionen

Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Neu ab Gebraucht ab
Gebundene Ausgabe
"Bitte wiederholen"
EUR 52,95
EUR 52,95 EUR 52,94
6 neu ab EUR 52,95 6 gebraucht ab EUR 52,94

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre E-Mail-Adresse oder Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.




Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text attempts to present a largely balanced approach, which combines many elements of the different traditions of the subject. It includes a wide variety of examples, exercises (over 400), and applications, in order to illustrate the general concepts and results of the theory. This text provides a first basic course in classical descriptive set theory and covers material with which mathematicians interested in the subject for its own sake or those that wish to use it in their field should be familiar. Over the years, researchers in diverse areas of mathematics, such as logic and set theory, analysis, topology, probability theory, etc., have brought to the subject of descriptive set theory their own intuitions, concepts, terminology and notation.


Descriptive set theory is the area of mathematics concerned with the study of the structure of definable sets in Polish spaces. Beyond being a central part of contemporary set theory, the concepts and results of descriptive set theory are being used in diverse fields of mathematics, such as logic, combinatorics, topology, Banach space theory, real and harmonic analysis, potential theory, ergodic theory, operator algebras, and group representation theory. This book provides a basic first introduction to the subject at the beginning graduate level. It concentrates on the core classical aspects, but from a modern viewpoint, including many recent developments, like games and determinacy, and illustrates the general theory by numerous examples and applications to other areas of mathematics. The book, which is written in the style of informal lecture notes, consists of five chapters. The first contains the basic theory of Polish spaces and its standard tools, like Baire category. The second deals with the theory of Borel sets. Methods of infinite games figure prominently here as well as in subsequent chapters. The third chapter is devoted to the analytic sets and the fourth to the co-analytic sets, developing the machinery associated with ranks and scales. The final chapter gives an introduction to the projective sets, including the periodicity theorems. The book contains over four hundred exercises of varying degrees of difficulty.

Alle Produktbeschreibungen

In diesem Buch

(Mehr dazu)
A topological space is a pair (X, T), where X is a set and T a collection of subsets of X such that , X T and T is closed under arbitrary unions and finite intersections. Lesen Sie die erste Seite
Mehr entdecken
Ausgewählte Seiten ansehen
Buchdeckel | Copyright | Inhaltsverzeichnis | Auszug | Stichwortverzeichnis | Rückseite
Hier reinlesen und suchen:


4.5 von 5 Sternen
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Sterne
Beide Kundenrezensionen anzeigen
Sagen Sie Ihre Meinung zu diesem Artikel


Format: Gebundene Ausgabe
Deskriptive Mengenlehre beschaeftigt sich mit der Mengenlehre der reellen Zahlen oder, allgemeiner, der polnischer Raeume.
Als "einfuehrende" Lehrbuecher auf diesem Gebiet gibt es eigentlich nur zwei Alternativen:
Das Buch von Kechris und das (vergriffene) Buch von Moschovakis. Natuerlich wird auch im Buch "Set Theory" von Jech etwas Deskriptive Mengenlehre behandelt, aber nur sehr kurz.
Wer sich also in dieses Gebiet einarbeiten will, wird um dieses Buch nicht herumkommen. Das ist allerdings auch nicht schlimm, denn meines Erachtens ist es ausserordentlich gut geschrieben, enthaelt eine Fuelle von Uebungsaufgaben und deckt das Gebiet so gut ab, dass man es auch als Nachschlagewerk verwenden kann.
Natuerlich werden einige Grundkenntnisse in Mengenlehre, wie sie etwa im Buch von Kunen vermittelt werden, vorausgesetzt. Topologie und Masstheorie sollten einem ebenfalls nicht voellig fremd sein, da die wichtigsten Begriffe nur kurz eingefuehrt werden.
1 Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden
Format: Gebundene Ausgabe Verifizierter Kauf
I have used the book in research as a graduate student and a postdoc. It is a very good resource but, like many other mathematicians, Kechris has used a poor didactic style. The author plunges too fast into abstraction while I think it would be more effective to develop useful examples to motivate the theory. Some exercises are just not really 'exercises' but parts of research papers.
Kommentar War diese Rezension für Sie hilfreich? Ja Nein Feedback senden...
Vielen Dank für Ihr Feedback.
Wir konnten Ihre Stimmabgabe leider nicht speichern. Bitte erneut versuchen
Missbrauch melden

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: HASH(0xa5449588) von 5 Sternen 3 Rezensionen
18 von 18 Kunden fanden die folgende Rezension hilfreich
HASH(0xa547e15c) von 5 Sternen Not much alternative to this 12. Juli 2005
Von Nathan Oakes - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
There is a bit of unintended humor in the preface: "This book is essentially self-contained. The only thing it requires is familiarity...with the basics of general topology, measure theory, and functional analysis, as well as the elements of set theory..."

He says the target is the beginning graduate. I would place it better as a 2nd-year grad course. The text is dense and moves fast. Readability is pretty low. He never introduces a topic with context or overview. Extensive references to the literature were deliberately left out, which I think is wrong since it is a textbook. On the plus side, it is sprinkled with many exercises. (BTW, this is one of those cases that make you wish Springer didn't make authors do their own typesetting.)

There are only three common texts for descriptive set theory: Kechris, Jech, and Moschovakis. Jech has less detail on Polish spaces, Borel sets, and co-analytic sets, so it is not really a substitute, but its conciseness is nice and it makes a good companion. Moschovakis was a big deal when it came out because it collected a lot of information for the first time. But I don't think it is so good in content or style that you should be concerned if you have only Kechris and Jech.
9 von 10 Kunden fanden die folgende Rezension hilfreich
HASH(0xa50dd714) von 5 Sternen Excellent reference 7. Mai 2005
Von A.T. - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
A truly outstanding reference for the purely classical aspects of descriptive set theory, it falls under Kelley's label, "What every young set theorist needs to know." It is not an easy book for the beginner as it is very concise and gives little motivation, but for the advanced student it is essential.

As a Ph.D. student in the field, hardly a day goes by where I don't look up something in this book. I'm buying a new copy since my old one is falling apart.
HASH(0xa547ecc0) von 5 Sternen Every analyst should be familiar with first steps of the Borel hierarchy 22. Juni 2014
Von Jordan Bell - Veröffentlicht auf Amazon.com
Format: Gebundene Ausgabe
You don't need to be familiar with serious set theory to read parts of this book. In particular, you don't have to know anything about forcing, which if I hear it in a talk alerts me that I won't understand what follows. The material on trees, schemes, and games is probably best skipped over if you are only trying to dip into this book for material relevant to analysis.

Three universal spaces that are talked about are the Hilbert cube I^N, where I=[0,1] and N denotes the set of positive integers, the Baire space N^N, and the Cantor space 2^N. These are all Polish spaces, and various results are proved about embedding spaces into these and expressing spaces as continuous images of these. For example, any separable metrizable space is homeomorphic to a subspace of the Hilbert cube, and every Polish space is homeomorphic to a G-delta subspace of the Hilbert cube; every nonempty compact metrizable space is a continuous image of the Cantor space; and any Polish space that is zero-dimensional (has a basis of clopen sets) all of whose compact subsets have empty interior is homeomorphic to the Baire space (this is the Alexandrov-Urysohn theorem).

The material on Polish spaces and Borel measures is excellent and is what I have used the book for. This book merits a place on the shelf of anyone who does analysis, in the sense of functional analysis, harmonic analysis, ergodic theory, and probability theory. Most of the book is probably too set theoretic to be of interest to an analyst, but you can make good use of this book without reading that material.

I think that exercises in a mathematics book should be tools for the reader to make more material unconscious, and especially to become comfortable with unravelling complicated definitions. For example, when working with metrizable spaces, assertions about compatible metrics producing the same topologies on objects that a priori depend on the metrics would be good exercises. I don't think the exercises in this book are well chosen pedagogically; some of them are routine, but some (and these are not marked in any way) would certainly overwhelm a reader of ordinary skill. For example, one of the earliest questions in the book can be stated as proving that the irrationals between 0 and 1 are homeomorphic to the Baire space using the continued fraction expansion of an irrational number, and I expect that this is more likely to turn into a hopeless mess than it is to be an introduction to the fascination of continued fractions. If there are interesting results that Kechris wants to point out or to use later in the text, rather than pretending that they are good practice for a learner, he should call them "Remarks" and give a citation to the best written proof of the result he knows.
Waren diese Rezensionen hilfreich? Wir wollen von Ihnen hören.