In weniger als einer Minute können Sie mit dem Lesen von C4.5: Programs for Machine Learning auf Ihrem Kindle beginnen. Sie haben noch keinen Kindle? Hier kaufen Oder fangen Sie mit einer unserer gratis Kindle Lese-Apps sofort an zu lesen.

An Ihren Kindle oder ein anderes Gerät senden

 
 
 

Kostenlos testen

Jetzt kostenlos reinlesen

An Ihren Kindle oder ein anderes Gerät senden

Jeder kann Kindle Bücher lesen  selbst ohne ein Kindle-Gerät  mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.
Der Artikel ist in folgender Variante leider nicht verfügbar
Keine Abbildung vorhanden für
Farbe:
Keine Abbildung vorhanden

 

C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning) [Kindle Edition]

J. Ross Quinlan
5.0 von 5 Sternen  Alle Rezensionen anzeigen (2 Kundenrezensionen)

Kindle-Preis: EUR 37,46 Inkl. MwSt. und kostenloser drahtloser Lieferung über Amazon Whispernet

Weitere Ausgaben

Amazon-Preis Neu ab Gebraucht ab
Kindle Edition EUR 37,46  
Taschenbuch EUR 55,59  

Produktbeschreibungen

Kurzbeschreibung

Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available for download (see below).



C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties. The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies.



This book and software should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.

Synopsis

Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available for download (see below). C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties.

The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies. This book and software should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.


Produktinformation

  • Format: Kindle Edition
  • Dateigröße: 2213 KB
  • Seitenzahl der Print-Ausgabe: 302 Seiten
  • Verlag: Morgan Kaufmann; Auflage: 1 (2. Dezember 1992)
  • Verkauf durch: Amazon Media EU S.à r.l.
  • Sprache: Englisch
  • ASIN: B0036ZBF1E
  • Text-to-Speech (Vorlesemodus): Aktiviert
  • X-Ray:
  • Durchschnittliche Kundenbewertung: 5.0 von 5 Sternen  Alle Rezensionen anzeigen (2 Kundenrezensionen)
  • Amazon Bestseller-Rang: #572.202 Bezahlt in Kindle-Shop (Siehe Top 100 Bezahlt in Kindle-Shop)

  •  Ist der Verkauf dieses Produkts für Sie nicht akzeptabel?

Mehr über den Autor

Entdecken Sie Bücher, lesen Sie über Autoren und mehr

Kundenrezensionen

4 Sterne
0
3 Sterne
0
2 Sterne
0
1 Sterne
0
5.0 von 5 Sternen
5.0 von 5 Sternen
Die hilfreichsten Kundenrezensionen
1 von 1 Kunden fanden die folgende Rezension hilfreich
Von Ein Kunde
Format:Taschenbuch
If you want to get introduced to Decision Trees algorithms, you must read this book. Ross Quinlan is the father of 'C 4.5' the most widely used tree algorithm. Most other algorithms (except for Chaid, which is older) are enhancements to C4.5 If you are from marketing, this is not a book for you. Why didn't you include a disk instead of so much source code pages, Ross ?
War diese Rezension für Sie hilfreich?
1 von 1 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Schatzkästchen 24. April 2011
Von Dr. Christian Donninger TOP 1000 REZENSENT
Format:Taschenbuch|Verifizierter Kauf
Dieses Buch enthält im ersten Teil eine sehr gute Beschreibung der C4.5 Klassifier Methoden. Was einem immer wieder auffällt: Das Hauptargument des Autors sind nicht theoretische Überlegungen. So schreibt er z.B. Wahrscheinlichkeit an mehreren Stellen unter Anführungszeichen, weil es es sich im streng mathematischen Sinn um keine Wahrscheinlichkeiten handelt. Letztendlich läuft die Argumentation immer darauf hinaus: Auch wenn es theoretisch nicht sauber ist, aber durch jahrelanges Ausprobieren habe ich herausgefunden, dass dies und das am besten funktioniert. Das ist bei allen praktisch erfolgreichen Systemen die ich kenne der Fall. Z.B. sind die theoretisch optimalen Lernraten viel zu gering. Theoretisch geht es um die sichere Konvergenz im Unendlichen. Real hat man aber nie soviel Zeit. Das System soll schon nach 1000 Schritten brauchbare Ergebnisse liefern. Meines Erachtens ist dieser Fakt ein Armutszeugnis für die moderne Theorieproduktion. L.Breiman hat dies auch in einem vielbeachteten Artikel schön auf den Punkt gebracht (siehe [1]). Es hat allerdings nichts geholfen.
Im zweiten Teil des Buches ist der vollständige C4.5 Kode abgedruckt. Das ist sehr mutig. Kode ist etwas sehr Intimes und jeder Programmierer hat Angst dass die Welt quasi auch seine angeschissenen Programmierunterhosen sieht. Es ist aber ein sehr schöner, guter alter K&R-C Kode. Wobei ich nicht nur den eigentlichen Machine-Learning Kode, sondern auch die vielen Support-Routinen, interessant gefunden habe. Z.B. ist ein häufiges Problem: Man mische den Input gut durch (shuffle). Der Kode enthält eine sehr nette shuffle-Routine.
Lesen Sie weiter... ›
War diese Rezension für Sie hilfreich?
Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)
Amazon.com: 4.5 von 5 Sternen  4 Rezensionen
16 von 17 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen Invaluable for serious users of See5 or C5.0 15. April 2008
Von Thomas Wikman - Veröffentlicht auf Amazon.com
Format:Taschenbuch
Despite its age this classic is invaluable to any serious user of See5 (Windows) or C5.0 (UNIX). C4.5 (See5/C5) is a linear classifier system that is often used for machine learning, or as a data mining tool for discovering patterns in databases. The classifiers can be in the form of either decision trees or rule sets. Just like ID3 it employs a "divide and conquer" strategy and uses entropy (information content) to compute its gain ratio (the split criteria).

C5.0 and See5 are built on C4.5, which is open source and free. However, since C5.0 and See5 are commercial products the code and the internals of the See5/C5 algorithms are not public. This is why this book is still so valuable. The first half of the book explains how C4.5 works, and describes its features, for example, partitioning, pruning, and windowing in detail. The book also discusses how C4.5 should be used, and potential problems with over-fit and non-representative data. The second half of the book gives a complete listing of the source code; 8,800 lines of C-code.

C5.0 is faster and more accurate than C4.5 and has features like cross validation, variable misclassification costs, and boost, which are features that C4.5 does not have. However, since minor misuse of See5 could have cost our company tens of millions of dollars it was important that we knew as much as possible about what we were doing, which is why this book was so valuable.

The reasons we did not use, for example, neural networks were:
(1) We had a lot of nominal data (in addition to numeric data)
(2) We had unknown attributes
(3) Our data sets were typically not very large and still we had a lot of attributes
(4) Unlike neural networks, decision trees and rule sets are human readable, possible to comprehend, and can be modified manually if necessary. Since we had problems with non-representative data but understood these problems as well as our system quite well, it was sometimes advantageous for us to modify the decision trees.

If you are in a similar situation I recommend See5/C5 as well as this book.
12 von 13 Kunden fanden die folgende Rezension hilfreich
5.0 von 5 Sternen The most clear work on Decision Trees available ! 4. Mai 1999
Von Ein Kunde - Veröffentlicht auf Amazon.com
Format:Taschenbuch
If you want to get introduced to Decision Trees algorithms, you must read this book. Ross Quinlan is the father of 'C 4.5' the most widely used tree algorithm. Most other algorithms (except for Chaid, which is older) are enhancements to C4.5 If you are from marketing, this is not a book for you. Why didn't you include a disk instead of so much source code pages, Ross ?
2 von 2 Kunden fanden die folgende Rezension hilfreich
4.0 von 5 Sternen Classical book - a bit pricy 27. Februar 2006
Von Asterix - Veröffentlicht auf Amazon.com
Format:Taschenbuch
This a very classical macihne learning book. The presentation of the material is very lucid. Dr. Quinlan is a great writer. However I would say that the book is a bit pricy. More than half of the book is C4.5 code. I personally would have liked more of the theory part. Also an updated edition with C5.0 algorithm will be very much welcome from the readers. I am not sure whether Dr. Quinlan has a book on C5.0 or is the enhancements over C4.5 are completely proprietory.

Overall, it is a good book to learn about the C4.5 algorithm.
4.0 von 5 Sternen Good Book to understand about decision tree construction. 27. September 2005
Von Veerasamy Rajendran - Veröffentlicht auf Amazon.com
Format:Taschenbuch
The Book is very simple but more informative to understand about the C5.0 algorithm. It has less number of pages to read but covers all the topics from decision tree construction to rule induction. I recommend the book to readers who want to understand about the C4.5 algorithm.
Waren diese Rezensionen hilfreich?   Wir wollen von Ihnen hören.
Kundenrezensionen suchen
Nur in den Rezensionen zu diesem Produkt suchen

Kunden diskutieren

Das Forum zu diesem Produkt
Diskussion Antworten Jüngster Beitrag
Noch keine Diskussionen

Fragen stellen, Meinungen austauschen, Einblicke gewinnen
Neue Diskussion starten
Thema:
Erster Beitrag:
Eingabe des Log-ins
 

Kundendiskussionen durchsuchen
Alle Amazon-Diskussionen durchsuchen
   


Ähnliche Artikel finden