Loggen Sie sich ein, um 1-Click® einzuschalten.
Mit kostenloser Probeteilnahme bei Amazon Prime. Melden Sie sich während des Bestellvorgangs an.
Jetzt eintauschen
und EUR 1,75 Gutschein erhalten
Alle Angebote
Möchten Sie verkaufen? Hier verkaufen
Den Verlag informieren!
Ich möchte dieses Buch auf dem Kindle lesen.

Sie haben keinen Kindle? Hier kaufen oder eine gratis Kindle Lese-App herunterladen.

A Brief History Of Time: From Big Bang To Black Holes [Englisch] [Taschenbuch]

Stephen Hawking
4.5 von 5 Sternen  Alle Rezensionen anzeigen (93 Kundenrezensionen)
Preis: EUR 10,60 kostenlose Lieferung Siehe Details.
  Alle Preisangaben inkl. MwSt.
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Nur noch 16 auf Lager (mehr ist unterwegs).
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Lieferung bis Montag, 27. Oktober: Wählen Sie an der Kasse Morning-Express. Siehe Details.
‹  Zurück zur Artikelübersicht



Stephen Hawking, one of the most brilliant theoretical physicists in history, wrote the modern classic A Brief History of Time to help nonscientists understand the questions being asked by scientists today: Where did the universe come from? How and why did it begin? Will it come to an end, and if so, how? Hawking attempts to reveal these questions (and where we're looking for answers) using a minimum of technical jargon. Among the topics gracefully covered are gravity, black holes, the Big Bang, the nature of time, and physicists' search for a grand unifying theory. This is deep science; these concepts are so vast (or so tiny) as to cause vertigo while reading, and one can't help but marvel at Hawking's ability to synthesize this difficult subject for people not used to thinking about things like alternate dimensions. The journey is certainly worth taking, for, as Hawking says, the reward of understanding the universe may be a glimpse of "the mind of God." --Therese Littleton -- Dieser Text bezieht sich auf eine andere Ausgabe: Gebundene Ausgabe .


"Master of the Universe... One scientist's courageous voyage to the frontiers of the Cosmos" (Newsweek)

"This book marries a child's wonder to a genius's intellect. We journey into Hawking's universe, while marvelling at his mind" (The Sunday Times)

"He can explain the complexities of cosmological physics with an engaging combination of clarity and wit... His is a brain of extraordinary power" (Observer)

"To follow such a fine mind as it exposes such great problems is an exciting experience" (The Sunday Times)

"One of the most brilliant scientific minds since Einstein" (Daily Express)


Stunningly repackaged edition of the international bestseller


Stephen Hawking's "A Brief History of Time" has become an international publishing phenomenon. Translated into thirty languages, it has sold over ten million copies worldwide and lives on as a science book that continues to captivate and inspire new readers each year. When it was first published in 1988 the ideas discussed in it were at the cutting edge of what was then known about the universe. In the intervening twenty years there have been extraordinary advances in the technology of observing both the micro- and macro-cosmic world. Indeed, during that time cosmology and the theoretical sciences have entered a new golden age. Professor Hawking is one of the major scientists and thinkers to have contributed to this renaissance. This special edition, which marks the twentieth anniversary of the book's original ground-breaking publication is surely destined to become a coveted collectors' item. -- Dieser Text bezieht sich auf eine andere Ausgabe: Gebundene Ausgabe .


Stephen Hawking is as much in the headlines today as he was in 1988, when his book A Brief History of Time shot into the bestseller lists all over the world, staying there for some 237 weeks - more than four years. It has gone on to sell 10 million copiesand its incredible success has transformed the publishing of popular science. Hawking himself has become an international celebrity, constantly in demand on the global lecture circuit as well as appearing in The Simpsons and becoming the subject of documentaries such as Master of the Universe, commissioned by Channel 4 to celebrate the twentieth anniversary of publication.

This special edition marking the twentieth anniversary of the book's original ground-breaking publication is destined to become a coveted collectors' item.

-- Dieser Text bezieht sich auf eine andere Ausgabe: Gebundene Ausgabe .


Was there a beginning of time? Could time run backwards? Is the universe infinite or does it have boundaries? These are just some of the questions considered in an internationally acclaimed masterpiece by one of the world's greatest thinkers. It begins by reviewing the great theories of the cosmos from Newton to Einstein, before delving into the secrets which still lie at the heart of space and time, from the Big Bang to black holes, via spiral galaxies and strong theory. To this day A Brief History of Time remains a staple of the scientific canon, and its succinct and clear language continues to introduce millions to the universe and its wonders.

Über den Autor und weitere Mitwirkende

Stephen Hawking held the post of Lucasian Professor of Mathematics and Theoretical Physics at Cambridge, the chair held by Isaac Newton in 1663, for thirty years. Professor Hawking is now Director of Research for the Centre for Theoretical Cosmology at the University of Cambridge. He has over a dozen honorary degrees, and was awarded the Companion of Honour in 1989. He is a fellow of the Royal Society and a Member of the US National Academy of Science. His books include the bestselling Black Holes and Baby Universes and Other Essays, The Universe in a Nutshell, and A Briefer History of Time. His most recent book, The Grand Design, was a Sunday Times bestseller. Stephen Hawking is regarded as one of the most brilliant theoretical physicists since Einstein. He lives in Cambridge.

Leseprobe. Abdruck erfolgt mit freundlicher Genehmigung der Rechteinhaber. Alle Rechte vorbehalten.

Chapter 1


A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: “What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise.” The scientist gave a superior smile before replying, “What is the tortoise standing on?” “You’re very clever, young man, very clever,” said the old lady. “But it’s turtles all the way down!”

Most people would find the picture of our universe as an infinite tower of tortoises rather ridiculous, but why do we think we know better? What do we know about the universe, and how do we know it? Where did the universe come from, and where is it going? Did the universe have a beginning, and if so, what happened before then? What is the nature of time? Will it ever come to an end? Can we go back in time? Recent breakthroughs in physics, made possible in part by fantastic new technologies, suggest answers to some of these longstanding questions. Someday these answers may seem as obvious to us as the earth orbiting the sun–or perhaps as ridiculous as a tower of tortoises. Only time (whatever that may be) will tell.

As long ago as 340 B.C. the Greek philosopher Aristotle, in his book On the Heavens, was able to put forward two good arguments for believing that the earth was a round sphere rather than a flat plate. First, he realized that eclipses of the moon were caused by the earth coming between the sun and the moon. The earth’s shadow on the moon was always round, which would be true only if the earth was spherical. If the earth had been a flat disk, the shadow would have elongated and elliptical, unless the eclipse always occurred at a time when the sun was directly under the center of the disk. Second, the Greeks knew from their travels that the North Star appeared lower in the sky when viewed in the south than it did in more northerly regions. (Since the North Star lies over the North Pole, it appears to be directly above an observer at the North Pole, but to someone looking from the equator, it appears to lie just at the horizon. From the difference in the apparent position of the North Star in Egypt and Greece, Aristotle even quoted an estimate that the distance around the earth was 400,000 stadia. It is not known exactly what length a stadium was, but it may have been about 200 yards, which would make Aristotle’s estimate about twice the currently accepted figure. The Greeks even had a third argument that the earth must be round, for why else does one first see the sails of a ship coming over the horizon, and only later see the hull?

Aristotle thought the earth was stationary and that the sun, the moon, the planets, and the stars moved in circular orbits about the earth. He believed this because he felt, for mystical reasons, that the earth was the center of the universe, and that circular motion was the most perfect. This idea was elaborated by Ptolemy in the second century A.D. into a complete cosmological model. The earth stood at the center, surrounded by eight spheres that carried the moon, the sun, the stars, and the five planets known at the time, Mercury, Venus, Mars, Jupiter, and Saturn (Fig 1.1). The planets themselves moved on smaller circles attached to their respective spheres in order to account for their rather complicated observed paths in the sky. The outermost sphere carried the so-called fixed stars, which always stay in the same positions relative to each other but which rotate together across the sky. What lay beyond the last sphere was never made very clear, but it certainly was not part of mankind’s observable universe.

Ptolemy’s model provided a reasonably accurate system for predicting the positions of heavenly bodies in the sky. But in order to predict these positions correctly, Ptolemy had to make an assumption that the moon followed a path that sometimes brought it twice as close to the earth as at other times. And that meant that the moon ought sometimes to appear twice as big as at other times! Ptolemy recognized this flaw, but nevertheless his model was generally, although not universally, accepted. It was adopted by the Christian church as the picture of the universe that was in accordance with Scripture, for it had the great advantage that it left lots of room outside the sphere of fixed stars for heaven and hell.

A simpler model, however, was proposed in 1514 by a Polish priest, Nicholas Copernicus. (At first, perhaps for fear of being branded a heretic by his church, Copernicus circulated his model anonymously.) His idea was that the sun was stationary at the center and that the earth and the planets moved in circular orbits around the sun. Nearly a century passed before this idea was taken seriously. Then two astronomers–the German, Johannes Kepler, and the Italian, Galileo Galilei–started publicly to support the Copernican theory, despite the fact that the orbits it predicted did not quite match the ones observed. The death blow to the Aristotelian/Ptolemaic theory came in 1609. In that year, Galileo started observing the night sky with a telescope, which had just been invented. When he looked at the planet Jupiter, Galileo found that it was accompanied by several small satellites or moons that orbited around it. This implied that everything did not have to orbit directly around the earth, as Aristotle and Ptolemy had thought. (It was, of course, still possible to believe that the earth was stationary at the center of the universe and that the moons of Jupiter moved on extremely complicated paths around the earth, giving the appearance that they orbited Jupiter. However, Copernicus’s theory was much simpler.) At the same time, Johannes Kepler had modified Copernicus’s theory, suggesting that the planets moved not in circles but in ellipses (an ellipse is an elongated circle). The predictions now finally matched the observations.

As far as Kepler was concerned, elliptical orbits were merely an ad hoc hypothesis, and a rather repugnant one at that, because ellipses were clearly less perfect than circles. Having discovered almost by accident that elliptical orbits fit the observations well, he could not reconcile them with his idea that the planets were made to orbit the sun by magnetic forces. An explanation was provided only much later, in 1687, when Sir Isaac Newton published his Philosophiae Naturalis Principia Mathematica, probably the most important single work ever published in the physical sciences. In it Newton not only put forward a theory of how bodies move in space and time, but he also developed the complicated mathematics needed to analyze those motions. In addition, Newton postulated a law of universal gravitation according to which each body in the universe was attracted toward every other body by a force that was stronger the more massive the bodies and the closer they were to each other. It was this same force that caused objects to fall to the ground. (The story that Newton was inspired by an apple hitting his head is almost certainly apocryphal. All Newton himself ever said was that the idea of gravity came to him as he sat “in a contemplative mood” and “was occasioned by the fall of an apple.”) Newton went on to show that, according to his law, gravity causes the moon to move in an elliptical orbit around the earth and causes the earth and the planets to follow elliptical paths around the sun.

The Copernican model got rid of... -- Dieser Text bezieht sich auf eine andere Ausgabe: Gebundene Ausgabe .
‹  Zurück zur Artikelübersicht