ARRAY(0xa3d9ebb8)

Neu kaufen

oder
Loggen Sie sich ein, um 1-Click® einzuschalten.
oder
Mit kostenloser Probeteilnahme bei Amazon Prime. Melden Sie sich während des Bestellvorgangs an.
Gebraucht kaufen
Gebraucht - Gut Informationen anzeigen
Preis: EUR 14,63

oder
 
   
Jetzt eintauschen
und EUR 0,60 Gutschein erhalten
Eintausch
Alle Angebote
Möchten Sie verkaufen? Hier verkaufen
Den Verlag informieren!
Ich möchte dieses Buch auf dem Kindle lesen.

Sie haben keinen Kindle? Hier kaufen oder eine gratis Kindle Lese-App herunterladen.

Analysis 1: Ein Lehr- und Arbeitsbuch für Studienanfänger (Springer-Lehrbuch) [Taschenbuch]

H. Neunzert , Winfried G. Eschmann , Arndt Blickensdörfer-Ehlers , Klaus Schelkes
4.2 von 5 Sternen  Alle Rezensionen anzeigen (5 Kundenrezensionen)
Preis: EUR 36,95 kostenlose Lieferung. Siehe Details.
  Alle Preisangaben inkl. MwSt.
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Auf Lager.
Verkauf und Versand durch Amazon. Geschenkverpackung verfügbar.
Lieferung bis Freitag, 25. April: Wählen Sie an der Kasse Morning-Express. Siehe Details.
‹  Zurück zur Artikelübersicht

Inhaltsverzeichnis

1. Die reellen Zahlen.- § 1 Mengen.- § 2 Funktionen.- Definitionen und Beispiele.- Die Komposition von Funktionen.- Die Umkehrfunktion.- Bijektive Funktionen.- § 3 Die reellen Zahlen.- Die Zahlengerade.- Die arithmetischen Eigenschaften von JR.- Ungleichungen.- Intervalle.- Definition und Eigenschaften der Wurzel.- Der Betrag.- Zusammenfassung.- 2. Vollständige Induktion.- § 1 Beweis durch vollständige Induktion.- Erklärung des Suinmenzeichens.- § 2 Rekursive Definitionen.- § 3 n-te Potenz und n-te Wurzel.- Eigenschaften der n-ten Potenz.- Die n-te Wurzel.- Die binomische Formel.- Zusammenfassung.- 3. Die komplexen zahlen.- § 1 Definition und Veranschaulichung.- § 2 Der Körper ? der komplexen Zahlen.- Rechengesetze in ?.- IR als Teilmenge von ?.- § 3 Realteil, Imaginärteil, Betrag.- Realteil, Imaginârteil, Konjugierte.- Der Betrag.- § 4 Die Polarform.- § 5 n-te Wurzeln einer komplexen Zahl.- Zusammenfassung.- 4. Reelle und komplexe Funktionen.- § 1 Definition der reellen Funktionen und Beispiele.- § 2 Monotone Funktionen.- § 3 Beispiele aus der Wechselstrom-lehre.- § 4 Rechnen mit reellen Funktionen.- § 5 Polynome.- Das Horner-Schema.- Nullstellen von Polynomen.- § 6 Komplexe Funktionen.- Komplexe Funktionen mit reellen Argumenten.- Zusammenfassung.- 5. Das Supremum.- § 1 Schranken, Maximum, Minimum, Supremum, Infimum.- § 2 Das Supremumsaxiom.- § 3 Eigenschaften von Supremum und Infimum.- § 4 Supremum und Maximum bei Funktionen.- § 5 Dual-, Dezimal-und Hexadezimal-zahlen.- Zusammenfassung.- 6. Folgen.- § 1 Definition.- § 2 Monotonie und Beschrànktheit.- Beschränktheit.- Monotonie.- Monotone beschrankte Folgen.- § 3 Konvergenz und Divergenz.- Konvergenz.- Divergenz.- Rechenregeln für konvergente Folgen.- Beispiele.- Rekursiv definierte Folgen.- § 4 Komplexe Folgen.- Zusammenfassung.- 7. Einführung in die Integralrechnung.- § 1 Beispiele.- § 2 Obersumme und Untersurame.- § 3 Die Definition des Integrals.- § 4 Das Riemannsche Integrabilitäts-kriterium.- Integrierbarkeit monotoner Funktionen.- § 5 Integral als Grenzwert einer Folge.- Das Riemannsche Summen-Kriterium.- § 6 Numerische Integration.- Die Rechteckregel.- Die Trapezregel.- Die Simpsonregel.- § 7 Eigenschaften des Integrals.- Eigenschaften des Integrals bezüg-lich des Integrationsintervalls.- Eigenschaften bezüglich des Inte-granden.- Ungleichungen für Integrale.- Zusammenfassung.- 8. Reihen.- (Zenon’s Paradoxon).- § 1 Beispiele.- § 2 Konvergente Reihen.- Geometrische Reihen.- Die „Schneeflockenkurve“.- Rechenregeln für konvergente Reihen.- Notwendiges Konvergenzkriterium.- § 3 Konvergenzkriterien.- Vergleichskriterien.- Wurzelkriterium.- Quotientenkriterium.- Alternierende Reihen.- § 4 Absolut konvergente Reihen.- Zusammenfassung.- 9. Potenzreihen und spezielle Funktionen.- § 1 Potenzreihen.- Konvergenz von Potenzreihen.- Zusammenfassung: Potenzreihen als Funktionen.- § 2 Exponentialfunktion.- Definition der Exponentialfunktion.- Eigenschaften der Exponentialfunktion.- § 3 Sinus und Cosinus.- § 4 Hyperbelfunktionen.- Zusammenfassung.- 10. Stetige Funktionen.- § 1 Stetigkeit.- Grenzwerte von Funktionen.- Einseitige und uneigentliche Grenzwerte.- Stetige Funktionen.- Trigonometrische Funktionen und Exponentialfunktion sind stetig.- Stetig auf [a,b]: Drei Sät6ze.- § 2 Anwendung auf spezielle Funktionen.- Exponentialfunktion, Logarithmus und allgemeine Potenz.- Trigonometrische Funktionen.- § 3 Die ?-?-Definition der Stetigkeit und die Lipschitz-Stegigkeit.- § 4 Stetigkeit und Integration.- Zusammenfassung.- 11. Differentialrechnung.- § 1 Lineare Approximation.- § 2 Definition der Differenzierbarkeit.- § 3 Differenzierbare Funktionen.- § 4 Rechenregeln für differenzierbare Funktionen.- Summe, Produkt, Quotient.- Die Kettenregel.- Die Ableitung der Umkehrfunktion.- Differenzierbarkeit von Potenzreihen.- § 5 Die Ableitung komplexer Funktionen.- § 6 Höhere Ableitungen.- Aufgaben zum Einuben der Diffe-rentiationstechniken.- § 7 Beispiele von Differential-gleichungen und Lösungen.- Losung der Schwingungsgleichung durch Potenzreihenansatz.- § 8 Der erste Mittelwertsatz.- Lokale Extrema.- Der erste Mittelwertsatz der Differentialrechnung.- Anwendungen des ersten Mittel-wertSät6zes.- § 9 Die Regeln von de L’Hôpital.- Zusammenfassung.- 12. Integralrechnung-Integrationstechnik.- § 1 Der Hauptsatz der Differential-und Integralrechnung.- § 2 Die Stammfunktion.- § 3 Eine andere Formulierung des HauptSät6zes.- § 4 Integration zur Lösung einfachster Differentialgleichungen.- § 5 Das unbestimmte Integral.- § 6 Die Integration komplexer Funktionen.- § 7 Integrationsmethoden.- Integranden der Form % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaatC % vAUfKttLearyqr1ngBPrgaiuaacuWFMbGzgaqbaaqaaiab-zgaMbaa % aaa!3D98! $$ \frac{{f'}}{f} $$.- Partielle Integration.- Substitution.- Eine Umformulierung der Substitu-tionsregel.- Substitution bei bestimmten Inte-gralen.- § 8 Separable Differentialgleichungen.- Lösungsmethode.- Merkregel.- Anfangswertprobleme.- § 9 Integration rationaler Funktionen.- 1. Schritt: Polynomdivision.- 2. Schritt: Polynomzerlegung.- 3. Schritt: Partialbruchzerlegung.- 4. Schritt: Integration rationaler Funktionen.- Kurze Merkregelsammlung.- Zusammenfassung.- 13. Uneigentliche Integrale.- § 1 Unbeschränktes Integrationsintervall.- Integrationsintervall ]- ?,? [.- Konvergenzkriterien.- § 2 Unbeschränkter Integrand.- Konvergenzkriterien.- § 3 Die Gammafunktion.- § 4 Die Laplace-Transformation.- Linearität und elementare Laplace-Transformationen.- Bemerkungen zum Umkehrproblem.- Transformation von Ableitungen.- Transformation von f(at±b).- Verschiebung des Arguments in der Bildfunktion.- Kurze Übersicht.- Zusammenfassung.- 14. Taylorpolynome und Taylorreihen.- § 1 Approximation durch Polynome.- Approximation.- Taylorpolynome.- § 2 Restglied.- Restglied nach Taylor.- Anwendung: Funktionswerte berechnen.- Restglied nach Lagrange.- Restglied abschätzen.- Anwendung: Lokale Extrema 2.- § 3 Taylorreihen.- Definition.- Ein Gegenbeispiel.- Konvergenz der Taylorreihe.- Beispiel Logarithmus.- Beispiel Arcus-Tangens.- Beispiel Binomische Reihe.- Zusammenfassung.- Lösungen der Aufgaben.

‹  Zurück zur Artikelübersicht