Facebook Twitter Pinterest
Möchten Sie verkaufen?
Zur Rückseite klappen Zur Vorderseite klappen
Hörprobe Wird gespielt... Angehalten   Sie hören eine Hörprobe des Audible Hörbuch-Downloads.
Mehr erfahren
Dieses Bild anzeigen

Analysis I (Texts and Readings in Mathematics) (Englisch) Gebundene Ausgabe – 15. Januar 2009

Alle Formate und Ausgaben anzeigen Andere Formate und Ausgaben ausblenden
Neu ab Gebraucht ab
Gebundene Ausgabe, 15. Januar 2009
"Bitte wiederholen"
EUR 1.602,69 EUR 123,91
1 neu ab EUR 1.602,69 4 gebraucht ab EUR 123,91

Es wird kein Kindle Gerät benötigt. Laden Sie eine der kostenlosen Kindle Apps herunter und beginnen Sie, Kindle-Bücher auf Ihrem Smartphone, Tablet und Computer zu lesen.

  • Apple
  • Android
  • Windows Phone

Geben Sie Ihre E-Mail-Adresse oder Mobiltelefonnummer ein, um die kostenfreie App zu beziehen.

Jeder kann Kindle Bücher lesen — selbst ohne ein Kindle-Gerät — mit der KOSTENFREIEN Kindle App für Smartphones, Tablets und Computer.


Welche anderen Artikel kaufen Kunden, nachdem sie diesen Artikel angesehen haben?


Es gibt noch keine Kundenrezensionen auf Amazon.de
5 Sterne
4 Sterne
3 Sterne
2 Sterne
1 Sterne

Die hilfreichsten Kundenrezensionen auf Amazon.com (beta)

Amazon.com: HASH(0x9f8b3510) von 5 Sternen 1 Rezension
12 von 12 Kunden fanden die folgende Rezension hilfreich
HASH(0x9f740af8) von 5 Sternen Excellent introduction (review) to the theory of calculus 30. Dezember 2013
Von Anonymous statman - Veröffentlicht auf Amazon.com
Verifizierter Kauf
Real analysis courses are one of the most challenging topics for students. Most books basically go into the nitty-gritty of the subject right away. But it is challenging for students to abandon what they have already been thought about number systems and mathematical operations to rigorously learn about their meaning. Perhaps not surprisingly, it took a gifted mathematician (who got his PhD at age 20 or so) to come up with the ultimate real analysis textbook.

In Analysis I, Tao introduces rigorous development of analysis concepts in a clear and transparent way. Literally all bases are covered, starting by covering more elementary material that usually is not discussed in real analysis courses. Even that the parenthesis is used in different contexts (e.g. to define functions and coordinates) is remarked. The author proves very clearly each mathematical statement at first, setting the tone for the reader to think critically. Little by little more and more proofs are left to the reader, acknowledging the need of doing exercises to learn the material. Many of the exercises provides useful Hints though. By analysis II virtually all theorem, lemma, corollary and proposition proofs are left to the reader. Some may find the lack of proofs (mostly in Analysis II) challenging, but many of these are discussed in class anyway, or can be found in other real analysis textbooks if need be. Analysis II is still a very useful volume due to the explanations leading to the mathematical statements and its chapters on Lebesgue measures and Lebesgue intregration.

The books are excellent for use in an undergraduate course or for those in need of a review on the subject (such as myself). The authors blog includes additional help on this and other math topics.

I do think the quality of the book material can be better though. The print sometimes is opaque and the binding is weak. In terms of content, there's room for improvement on the index. But overall, this is an incredibly useful resource for those interested in mathematical and probability theory.
Ist diese Rezension hilfreich? Wir wollen von Ihnen hören.